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• Research challenges in massive graph analysis
– “CS” problems: algorithms, performance, 

libraries/frameworks, productivity
• Impediments to high-performance complex 

network analysis on current systems
• Some results

– Massive graph analysis on the Cray XMT
– Graph analysis on cache-based multicore systems

Talk Outline



Sources of massive data: the Internet, Intelligence and surveillance 
applications, sensor networks, scientific applications, petascale
simulations, experimental devices.

Graph abstractions are pervasive

Cosmology
Application: Outlier detection. 
Challenges: petascale datasets.
Graph problems: clustering, 
matching. 

Bioinformatics
Application: Identifying drug 
target proteins.
Challenges: Data heterogeneity, 
quality.
Graph problems: centrality, 
clustering.

Social Informatics
Application: Discover emergent 
communities, model spread of 
information.
Challenges: new analytics routines, 
uncertainty in data.
Graph problems: clustering, 
shortest paths, flows. 

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg, (2,3) www.visualComplexity.com

New challenges for analysis: data sizes, data heterogeneity, 
uncertainty, data quality, and dynamic/temporal nature.

http://physics.nmt.edu/images/astro/hst_starfield.jpg


• Social, collaboration, citation, biological, epidemiological, 
web graphs, …

• Informatics networks are fundamentally different from 
graph topologies and computations in scientific 
computing!

Informatics: dynamic, high-
dimensional, heterogeneous 
data

Static networks, 
Euclidean topologies

Massive data analytics & Informatics



• What are the degree distributions, clustering coefficients, 
diameters, etc.?
– Heavy-tailed, small-world, expander, geometry+rewiring, local-global 

decompositions, ...

• How do networks grow, evolve, respond to perturbations, 
etc.?
– Preferential attachment, copying, HOT, shrinking diameters, ..

• Are there natural clusters, communities, partitions, etc.?
– Concept-based clusters, link-based clusters, density-based clusters, ...

• How do dynamic processes - search, diffusion, etc. -
behave on networks?
– Decentralized search, undirected diffusion, cascading epidemics, ...

• How best to do learning, e.g., classification, regression, 
ranking, etc.?
– Information retrieval, machine learning, ...

What we’d like to understand about these 
large networks (Math/CS problems):



• How do we solve massive graph problems (statistical analysis, 
dynamics, community detection, learning) with current algorithms/ 
systems/languages/ programming models/libraries?

• How do we get analytics routines to scale for massive datasets?
– We need new algorithms that exploit graph topology & modern 

computer architectures
• What are the right abstractions for designing portable, high-

performance graph algorithms?
– PRAM-like, BSP-like, MapReduce, matrices/tensors?

• Application Architecture mapping for current systems?
– Multicore servers, commodity clusters, supercomputers, clouds 

• What can we do with accelerators?
– GPUs, Cell processor, Netezza and Azul data warehousing appliances

• What are the languages & programming models we should be using 
for high productivity/performance?

– C+threads, Cilk++, MPI, PGAS languages, Pig/Hive/Sawzall, … 

The CS/HPC research problems



Software: what the community wants …

Home 
computers

Commodity 
clusters

Accelerators Multicore
Servers

Massively 
multithreaded 
Systems (Cray XMT)

Petascale computers

Analysis routines that run 
everywhere, with high performance

massive datadomain expert
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Graph Software: current status
Home 
computers

Commodity 
clusters

Accelerators

Multicore
Servers

Massively 
multithreaded 
Systems (Cray XMT)

Petascale computers

Plethora of solutions, motivated by social 
network analysis and computational biology 
research problems. Cannot handle massive 
data.
Representative software: igraph, 
Cytoscape

Implementations of Bulk-synchronous
algorithms; MapReduce-based approaches. 
Performance a concern. Likely not generic 
enough to process queries on dynamic 
networks.
Boost Graph library, CGM-lib

Impressive 
performance 
on synthetic network 
instances/simple 
problems. 
Applicability to 
complex informatics 
problems unclear.
e.g., recent BFS 
performance studies

SNAP: Tuned, heterogeneous 
implementations to solve 
complex graph analysis 
problems. 
C + threads

Can process networks with 
billions of vertices and edges, 
on high-end multicore servers. 

Fastest cache-based 
multicore implementations of 
several algorithms. 

MTGL: Multithreaded graph 
library based on the “visitor” 
design pattern. 

C++ with XMT pragmas

Can also run on multicore
systems. 



• Some algorithms have excellent cache locality
– “dense” graphs, Bellman-Ford algorithm for APSP

• Some graph algorithms have a bounded memory 
footprint, or very good spatial locality
– rich literature on streaming graph algorithms

• Critical to consider graph size and topology in application 
to architecture mapping
– Can achieve high performance on GPUs if the graph + data 

structures fit in device memory.
– Reasonably good performance on distributed memory clusters if 

the graph has low conductance (can be partitioned w/ low edge 
cut).

• We’ll limit our discussion to the harder problems: poor 
locality, difficult to partition, dynamic, heterogeneous 
data, …

Graph-theoretic problems and algorithms are 
diverse …



• Low graph diameter.

• Skewed (“power law”) degree 
distribution of the number of 
neighbors.

• Sparse: m = O(n).

• Vertices, edges have multiple 
attributes.

Informatics “Small-world” complex networks
“Six degrees of separation”

“Power law” degree distribution
Human Protein Interaction Network

(18669 proteins, 43568 interactions) 
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Problem Size (Log2 # of vertices)
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Serial Performance of “approximate betweenness centrality” on a 
2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache)
Input: Synthetic R-MAT graphs (# of edges m = 8n)

The problems: #1. The locality challenge
“Large memory footprint, low spatial and temporal   
locality impede performance”

~ 5X drop in 
performance

No last-level cache (LLC) misses

O(m) LLC misses



• Parallelization strategies at loggerheads with techniques 
for enhancing memory locality

• Classical “work-efficient” graph algorithms may not fully 
exploit new architectural features
– Increasing complexity of memory hierarchy (x86), DMA support 

(Cell), wide SIMD, floating point-centric cores (GPUs).

• Tuning implementation to minimize parallel overhead is 
non-trivial
– Shared memory: minimizing overhead of locks, barriers.
– Distributed memory: bounding message buffer sizes, bundling 

messages, overlapping communication w/ computation. 

The problems: #2. The parallel scaling challenge 
“Classical parallel graph algorithms perform poorly on 
current parallel systems”



• Research challenges in massive graph analysis
– “CS” problems: algorithms, performance, 

libraries/frameworks, productivity
• Impediments to high-performance complex 

network analysis on current systems
• Results

– Case study: graph traversal-based algorithms
– Massive graph analysis on the Cray XMT
– Graph analysis on cache-based multicore systems

Talk Outline



• Parallel graph algorithms and efficient implementations 
for massive complex network analysis
– Graph traversal, st-connectivity [ICPP06a]
– Shortest paths [ALENEX07, MTAAP07]
– Centrality metrics in network analysis [ICPP06b, WAW07]
– Community Identification [IPDPS08]

• Open-source graph software: graphanalysis.org, SNAP, 
GTgraph, DIMACS-ch9-shortest_paths

• HPCS SSCA Graph Analysis benchmark [HiPC06]
• Applications to systems biology: lethality in the human 

protein interaction network [ParCo09]

Prior research @ Georgia Tech



• Data structures, algorithms for processing connectivity queries in 
massive dynamic networks [IPDPS09]

• A lock-free parallel betweenness centrality algorithm for the Cray 
XMT [MTAAP09]

• Performance tuning graph traversal on multicore [SIAM AN09]
• Sequential algorithms: single-source shortest paths with few edge 

weights [JODA09], new priority queue for single-source shortest 
paths [COCOA09], negative cycle detection [FAW09]

• Parallel algorithms for
– Community detection: overlapping communities, spectral techniques
– Frequent subgraph mining in temporal networks

• Scaling the SSCA#2 graph analysis benchmark on distributed 
memory clusters (with UPC)

Current research @ LBNL



Graph traversal (BFS) problem definition
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Memory requirements (# of machine words):
• Sparse graph representation: m+n
• Stack of visited vertices: n
• Distance array: n



1. Expand current frontier (level-synchronous approach, suited for low diameter 
graphs)

Parallel BFS Strategies
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2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach, 
suited for high-diameter graphs)

• O(D) parallel steps
• Adjacencies of all vertices 
in current frontier are 
visited in parallel
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• path-limited searches 
from “super vertices”
• APSP between “super 
vertices”



• Ideally, we want to do 1 (or more) memory 
op/clock cycle/processor.

• However, we have to do with
– Caches

Reduce latency by storing data close to the processor

– Vectors
Amortize latency by fetching N words at a time

– Parallelism
Hide latency by switching tasks
Little’s law: concurrency = bandwidth * latency

Hiding memory latency



• Tolerates latency by extreme multithreading
– Each processor supports 128 hardware threads
– Context switch in a single tick
– No cache or local memory
– Context switch on memory request
– Multiple outstanding loads

• Remote memory requests do not stall processors
– Other streams work while the request 

gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Hashed global shared memory
– 64-byte granularity, minimizes hotspots 

• High-productivity graph analysis!

Cray XMT Operation



Large-scale Graph Traversal [DIMACS Challenge ’07]

Problem Graph Result Comments

Multithreaded 
BFS

Random graph, 
256M vertices, 1B 
edges

2.3 sec (40p)
73.9 sec (1p) 
MTA-2

Processes all low-
diameter graph 
families

External Memory 
BFS

Random graph, 
256M vertices, 1B 
edges

8.9 hrs (3.2 
GHz Xeon)

State-of-the-art 
external memory BFS

Multithreaded SSSP Random graph, 
256M vertices, 1B 
edges

11.96 sec
(40p) MTA-2

Works well for all low-
diameter graph 
families

Parallel Dijkstra Random graph, 
240M vertices, 1.2B 
edges

180 sec, 96p 
2.0GHz cluster

Best known 
distributed-memory 
SSSP implementation 
for large-scale graphs

Cray MTA-2 is the predecessor to the XMT.



Shared memory multicore/SMP servers

• High-bandwidth shared memory
multiprocessor system.
• 16 Power5 1.9 GHz processors
• 256 GB physical memory
• 32KB L1 data cache, 2MB L2, 
32MB L3  per processor.
• 8-way superscalar, 2-way SMT 
on each core

IBM Power 570 SMP Server

Sun “Niagara” 
Multicore Servers

Cache-based multicore servers with chip 
multithreading 
Sun Fire T2000: UltraSparc T1 (Niagara1)
1 socket x 8 cores x 4 threads per core; 16 GB RAM
3 MB shared L2 cache; 900 MHz processor
Sun Fire T5120: UltraSparc T2 (Niagara2)
1 socket x 8 cores x 8 threads per core; 32 GB RAM
4 MB shared L2 cache; 1167 MHz processor

• Synthetic networks generated using
the R-MAT [CZF04] graph model, 
based on matrix Kronecker products.
• Representative of several real-world 
graph families.
• Challenging instances for 
parallelization due to unbalanced degree 
distribution.

Test Networks

Image sources: sun.com, ibm.com



• SNAP: Parallel framework for small-world complex graph analysis
• 10-100x faster than existing approaches.

– Parallelism, algorithm engineering, exploiting graph topology.

• Can process graphs with billions of vertices and edges.
• Open-source:

Image Source: visualcomplexity.com

snap-graph.sourceforge.net

snap-graph: Small-world Network Analysis and 
Partitioning



Optimizations/heuristics for real-world graphs

• Preprocessing kernels (connected components, 
biconnected components, sparsification) 
significantly reduce computation time.
– e.g. a high number of isolated and degree-1 vertices

store BFS/shortest path trees from high degree vertices and 
reuse them
Typically 3-5X performance improvement

• Exploit small-world network properties (low 
graph diameter)
– Load balancing in the level-synchronous parallel BFS

algorithm
– SNAP data structures are optimized for unbalanced 

degree distributions



Graph:  25M vertices and 200M
edges, System: Sun Fire T2000

• New graph 
representations for 
dynamically evolving 
small-world networks 
in SNAP.

• Support fast, parallel 
structural updates to 
low-diameter scale-
free and small-world 
graphs.

Number of threads
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Compact graph representations for 
dynamic network analysis [IPDPS09]



Faster Community Identification Algorithms: 
Performance Improvement over the Girvan-Newman 
approach [IPDPS08]

Graphs: Real-world networks (order of 
Millions), System: Sun Fire T2000

• Speedup from 
Algorithm 
Engineering 
(approximate BC) 
and parallelization 
(Sun Fire T2000) are 
multiplicative!

• 100-300X overall 
performance 
improvement over 
Girvan-Newman 
approach

Small-world Network

PPI Citations DBLP NDwww Actor
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• Approximate “betweenness centrality” on SSCA#2 
network, SCALE 24 (16.77 million vertices and 134.21 
million edges.)

Cray XMT vs. Cache-based multicore

Number of processors/cores
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• Preliminary research on speeding up graph-traversal based 
algorithms on emerging x86 cache-based multicore systems.

• Case study: a closer look at parallel Breadth-First Search (BFS) on 
a single-socket Intel Nehalem system.

• Adapting several optimization strategies from LBL/UC Berkeley 
scientific computing multicore auto-tuning research:

How about x86 cache-based multicore?

c. streaming 
stores

b. aligned memory 
accesses

a. software 
prefetching1. cache-blocking 

formulation

3. compression

2. relabel
vertex 

identifiers
d. integer SSEA
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1. Software prefetching on the Intel Core i7 (supports 32 loads and 20 
stores in flight)
– Speculative loads of index array and adjacencies of frontier vertices will 

reduce compulsory cache misses.
– Hardware prefetcher doesn’t help, disable it.

2. Aligning adjacency lists to optimize memory accesses
– 16-byte aligned loads and stores are faster.
– Alignment helps reduce cache misses due to fragmentation
– 16-byte aligned non-temporal stores (during creation of new frontier) are 

fast.
3. SIMD SSE integer intrinsics to process “high-degree vertex” 

adjacencies.
4. Fast atomics (BFS is lock-free w/ low contention, and CAS-based 

intrinsics have very low overhead)
– Pipelined atomics in the near future

5. Hugepage support (significant TLB miss reduction)
6. NUMA-aware memory allocation exploiting first-touch policy 

Tuning BFS on x86 multicore: hairy! 



x86 Parallel BFS: Experimental Setup
Network n m Max. out-

degree
% of vertices w/ out-
degree 0,1,2

Orkut 3.07M 223M 32K 5
LiveJournal 5.28M 77.4M 9K 40
Flickr 1.86M 22.6M 26K 73
Youtube 1.15M 4.94M 28K 76
R-MAT 8M-64M 8n n0.6

Intel Xeon 5560 (Core i7, “Nehalem”)
• 2 sockets x 4 cores x 2-way SMT
• 12 GB DRAM, 8 MB shared L3
• 51.2 GBytes/sec peak bandwidth
• 2.66 GHz proc.

Performance averaged over 
10 different source vertices, 3 runs each.



Optimization Generality Impact* Tuning 
required?

(Preproc.) Sort adjacency lists High -- No
(Preproc.) Permute vertex labels Medium -- Yes
Preproc. + binning frontier vertices +
cache blocking

M 2.5x Yes

Lock-free parallelization M 2.0x No
Low-degree vertex filtering Low 1.3x No

Software Prefetching M 1.10x Yes
Aligning adjacencies, streaming stores M 1.15x No
Fast atomic intrinsics H 2.2x No

Impact of optimization strategies

* Optimization speedup (performance on 4 cores) w.r.t baseline 
parallel approach, on a synthetic R-MAT graph (n=223,m=226)



Parallel performance (Orkut graph)
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• All problems can be solved on large-scale distributed memory 
clusters; most can be solved efficiently. How efficiently can be 
solve graph problems?

• In theory and practice, bleak projections for graph partitioning: 
– Erdos, Graham, Szemeredi ‘75: (almost all) sparse graph classes lack 

good separators.
– Lang ’06, Leskovec et al. ‘08: spectral partitioning on power-law 

networks produces unbalanced cuts.
• In practice, poor performance reported for distributed memory 

implementations (in comparison to SMP/multicore servers/XMT with 
lot of shared memory) 
– Prior work on traversal-based algorithms for massive graphs (~ billions 

of entities) has led to observations such as 4 Cray MTA-2 
processors = 32K BlueGene/L cores!

• Similar challenges with Clouds/Roadrunner/GPU clusters
• Worth exploring: Hierarchical UPC + threads with graph 

compression + replication (instead of partitioning) 

How about using my petascale Blue Gene-
P/XT5 cluster?



• Massive data and graph abstractions are 
everywhere

• Exciting Math/CS and CS/HPC research 
problems to study

Research Contributions
• The SNAP graph analysis framework for cache-

based multicore systems.
• Multithreaded algorithms for graph analysis on 

the Cray XMT.
• Performance tuning graph algorithms on x86 

multicore systems.

Summary



• SDM @ LBL, FTG @ LBL, BEBOP @ UC 
Berkeley 

• David A. Bader (Georgia Tech)
• Jonathan Berry, Bruce Hendrickson (Sandia 

National Laboratories)
• John Feo, Daniel Chavarria (Pacific Northwest 

National Laboratories)
• Guojing Cong (IBM Research)
• K. Subramani (West Virginia University)

Collaborators



• PNNL CASS-MT Center for access to the 
Cray XMT.

• Cray Inc., for access to their guest XMT 
system.

• Par Lab @ UC Berkeley for access to the 
Millennium cluster systems.

• Research supported in part by DOE Office 
of Science under contract number  DE-
AC02-05CH11231.

Acknowledgments



Backup Slides



Centrality Analysis applied to Protein Interaction Networks (PINs) 
leads to interesting insight!

Human Genome core protein interactions
Degree vs. Betweenness Centrality
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Parallel Performance on the IBM Power 570

RMAT network with 500 million vertices, 
4 billion edges.

Graph traversal 
w/ edge updates
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