
1 CRD/NERSC, Lawrence Berkeley National Laboratory
2 Computer Science Division, UC Berkeley

3 Princeton Plasma Physics Laboratory

Irregular Memory Access
Optimizations for Gyrokinetic PIC

applications on multicore processors

Kamesh Madduri1 Sam Williams1

Lenny Oliker1 John Shalf1 Erich Strohmaier1

Jimmy Su2 Filip Blagojevic1 Kathy Yelick1,2

Stephane Ethier3

• Introduction
– Particle-In-Cell simulations
– GTC (Gyrokinetic Toroidal Code) Overview
– The particle-mesh interpolation step

• Tuning parallel particle-mesh interpolation on
multicore systems
– Grid decomposition schemes
– Synchronization strategies

• Performance results

• Future work

Talk Outline

Madduri, Williams, et al., “Memory-Efficient Optimization of
Gyrokinetic Particle-to-Grid Interpolation for Multicore Processors”,
IEEE/ACM Supercomputing 2009, to appear.

• Popular method for numerical simulation of many-body
systems.

• Often implemented from first principles without the need
of an approximate equation of state

• Applications: plasma modeling, Astrophysics

Particle-In-Cell (PIC) simulations

Grid/mesh overlaying particles to
measure charge and current densities Generic PIC Schematic

Move particles
Fi vi xi(xi, vi)

(E,B)j

Weight particles
to field

(xi ,vi) (ρ,J)j

Field solve
(ρ,J)j (E,B)j

Weight field
to particles
(E,B)j Fj

∆t

“Push”

“Solve”

“Scatter”“Gather”

Plasma Microturbulence Simulations & GTC

• ITER: International collaboration to
build the first fusion science
experiment of a self-sustaining fusion
reaction, the “burning plasma”.

• #1 priority in DoE’s science facility
investment plan (2003)
Donut-shaped (“tokamak”) reactor

• GTC: Code developed for Gyrokinetic
particle-in-cell simulations of ion
temperature gradient (ITG) turbulence.

• Scientists study effects of low-frequency
microturbulence in fusion plasmas.

• Developed at the Princeton Plasma
Physics laboratory.

• One of the numerical tools to predict
efficiency of energy confinement in ITER.

• Two levels of parallelization in the
GTC MPI Implementation
– 1D domain decomposition (along

the torus, typically 64- to 128-way)
– Particle decomposition in each

toroidal domain
• Particle decomposition among MPI

processes in each domain requires
poloidal plane replication.

Parallel Gyrokinetic Toroidal Code (GTC)

3D toroidal mesh

Cross-section: poloidal plane

Uniform in ψ-θ

ψIBM Blue Gene/L run
(2007) on 32,768 cores:

toroidal planes: 64
512-way particle
decomposition

1024 particles/cell
32768 poloidal grid points

• Particle-Grid
interpolation steps
(“scatter” and “gather”)
constitute 80% of the
execution time in
simulations.

• “Scatter” step main
source of inefficiency
due to poor locality.

Illustration of PIC “Scatter” step
(or Charge deposition/particle-to-grid
interpolation) “Push”

Fi vi xi

Weight particles
to field

(xi ,vi) (ρ,J)j

“Solve”
(ρ,J)j (E,B)j

“Gather”
(E,B)j Fj ∆t

“Scatter”

• Grid memory accesses depend on the order in which particles
are processed.

• In a multithreaded implementation with a shared grid, multiple
threads update grid locations in parallel.

• The case of random particle positions and parallel updates is
similar to the GUPS benchmark. However, implementations
usually exploit the fact that PIC is a physical many-body
simulation method.

1. Gyrating motion of a charged
particle (ion) replaced by a
moving ring.

2. Scatter step: ring
approximated by four points,
each assigned a quarter of
the charge to deposit on
neighboring grid coordinates.

3. The charge at 8-32 distinct
grid points updated by each
ion.

4. Gyrokinetic radius (Larmor
radius) of a particle varies in
simulation.

Illustration of GTC “gyrokinetic” charge
deposition step: Irregular memory accesses

• Problem: Large memory footprint due to poloidal plane
replication (in the 1D grid decomposition scheme)
hinders GTC scaling for studying ITER-sized devices.

• Problem: Flat-MPI implementation does not effectively
exploit multicore nodes.

Our Contributions:
• Memory-efficient multicore optimizations for the GTC charge

deposition kernel.
• Exploration of several different grid decomposition and

synchronization strategies.
• Experimental study and performance tuning on emerging cache-

based multi-socket, multicore systems.
– Intel Nehalem, AMD Barcelona, Sun Victoria Falls

GTC PIC charge deposition kernel optimization on
multicore systems

Madduri, Williams, et al., “Memory-Efficient Optimization of
Gyrokinetic Particle-to-Grid Interpolation for Multicore Processors”,
IEEE/ACM Supercomputing 2009, to appear.

• Partition particle updates among threads.
• Thread parallelization complemented by grid

decomposition and efficient synchronization, to reduce
shared array update overhead and enhance locality.

Multithreaded parallelization

For each particle do
#1. Get position

(5 loads from particle arrays, 3 loads
from grid arrays, 2 stores, 1 sqrt, ~ 20
flops)

#2. Perform four-point gyrokinetic
averaging

(8-32 updates to charge density grid
array, 20 stores to auxiliary particle
arrays, 40 loads from grid arrays, ~ 160
flops)

Charge deposition
kernel pseudo-code

Shared grid vs. Full replication

Shared: One grid shared
by all threads.
Most memory-efficient
approach.

Full replication: Each thread maintains
a private copy of the grid.
Requires a P-way reduction to get final
result.

Requires synchronization for
charge updates.

No synchronization required.

Simplest Pthreads approach. Similar to reference GTC
MPI implementation.

…

P private copies (replicates) 1 shared

• Assume a radially-binned particle ordering (particle locality in ψ).
– Motivates a radial partitioning of grid.

• The particle Larmor radius is less than the # of grid flux surfaces.
– Motivates a radial grid partitioning + ghost flux surfaces to reduce

shared grid updates.

Grid partitioning

Thread 3
Thread 2
Thread 1
Thread 0

Thread 2

Additional partitioned grid
w/ ghost flux surfaces

Partitioned grid

Shared grid Shared grid

Two-way reduction
required.

Three-way reduction
required.

Possible Synchronization Strategies

Lock all θ-ζ
for a given ψ

Lock all ζ for
a given θ-ψ

Atomically increment
one grid point

Individually lock
one grid point

Coarse-grained
locks

Medium-grained
locks

Fine-grained
locks

Atomics

of lock
calls per
particle

3232168

Contention dependent
on # of particles per cell
and particle distribution.

Requires radial binning
of particles for ensuring
low contention

Contention dependent only on # of particles per cell.

• Fused the address calculation and charge deposition
loops to improve temporal cache locality.

• Data structure changes to reduce misses due to cache
line fragmentation.

• Fine partitioning of grid points among threads.
• NUMA-aware particle initialization.
• Affinity binding: Pinning threads to cores, static

scheduling of particle charge decomposition work
• Partial SIMDization of charge updates.

Other Performance Optimizations

• We assume a radially-binned particle distribution.
– Rate of change of particle position least in the radial direction.
– Periodic radial binning essential for efficient performance.

• We experiment with several different grid sizes and
particles-per-cell configurations.

GTC problem configurations

of poloidal
grid points

of particles
per cell

Architectural Details of Parallel Systems

AMD Opteron 2356
Barcelona

Intel Gainestown X5550
Nehalem

Sun UltraSparc T5140
Niagara2

73.6 85.3 18.7
Double-precision peak GFlop/s

DRAM Pin Bandwidth (GBytes/s)

21.33 51.2
42.66 (r)

+ 21.33 (w)
of threads of execution

8 16 128

Parallel performance with various optimizations
B

ar
ce

lo
na

N
eh

al
em

N
ia

ga
ra

2

Problem size B (150K grid points), 5 particles per cell.

• Nehalem performance is ~ 2x of Barcelona.
• Pthreads implementations significantly faster
than the MPI reference code.
• Partitioned grid approaches result in
substantial performance improvement over
shared grid variants.
• Atomic increments best-performing
synchronization strategy.
• Thread pinning most beneficial on Nehalem.

Parallel Scaling

Problem size B (150K grid points), 5 particles
per cell.
Strong scaling results (results normalized to
single-threaded/single-process performance)

B
ar

ce
lo

na

N
eh

al
em

N
ia

ga
ra

2

• SMT gives substantial benefit on Nehalem for
the Pthreads variants.
• MPI implementation does not scale beyond 1
process/core.
• Sharp drop in Victoria Falls performance due
to load imbalance from Larmor radius variation.

Parallel performance with
problem size variation
Nehalem performance in GFlop/s

Performance
drop on
increasing
grid size

Performance improvement on
increasing # of particles per cell

Best “memory-efficient” Pthreads variant
vs. reference MPI implementation

B
ar

ce
lo

na

N
eh

al
em

N
ia

ga
ra

2 • Substantial speedup for small particles-per-
cell values on all processors.
• Reduction cost reduces as the number of
particles per cell increases.
• Nehalem speedup due to efficient utilization of
SMT.
• Niagara runs suffer due to load imbalance
from avg. gyroradius variation.

Ratio of the GFlop/s values of memory-efficient
Pthreads variant & MPI implementation indicated.

Memory Footprint
Problem size B (150K grid points), 5 particles per cell.

Nehalem Niagara2

• Memory requirements of the fully replicated version prohibitive!
• Naively using multicore is infeasible.

• Our memory-efficient charge deposition approaches
(with grid decomposition and synchronization) enable
solution to large problem instances on current multicore
systems.

• For small problem sizes, we achieve a performance
improvement of 1.5-4.4x over the optimized MPI
implementation.

• Maximum Larmor radius value scales as (# of radial flux
surfaces)/16, leading to load imbalance in the partitioned
grid approaches on the Niagara2.

• Pipelined atomic intrinsic support would improve
performance of the memory-efficient Pthreads approach.

Conclusions

• Explore middle ground between the partitioned
grid and the P-way reduction (full replication)
approaches.

• Fast implementation of a periodic radial binning
strategy to enhance locality.

• Investigate charge deposition parallelization on
local-store based multicores.

• Identify parameters to tune for, algorithmic
variants to automatically choose.

Future Work

Questions?

Thank you!

	Irregular Memory Access Optimizations for Gyrokinetic PIC applications on multicore processors
	Talk Outline
	Particle-In-Cell (PIC) simulations
	Plasma Microturbulence Simulations & GTC
	Parallel Gyrokinetic Toroidal Code (GTC)
	Illustration of PIC “Scatter” step �(or Charge deposition/particle-to-grid interpolation)
	Illustration of GTC “gyrokinetic” charge deposition step: Irregular memory accesses
	GTC PIC charge deposition kernel optimization on multicore systems
	Multithreaded parallelization
	Shared grid vs. Full replication
	Grid partitioning
	Possible Synchronization Strategies
	Other Performance Optimizations
	GTC problem configurations
	Architectural Details of Parallel Systems
	Parallel performance with various optimizations
	Parallel Scaling
	Parallel performance with �problem size variation
	Best “memory-efficient” Pthreads variant�vs. reference MPI implementation
	Memory Footprint
	Conclusions
	Future Work
	Thank you!

