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• Introduction
– Particle-In-Cell simulations
– GTC (Gyrokinetic Toroidal Code) Overview
– The particle-mesh interpolation step

• Tuning parallel particle-mesh interpolation on 
multicore systems
– Grid decomposition schemes
– Synchronization strategies

• Performance results

• Future work

Talk Outline

Madduri, Williams, et al., “Memory-Efficient Optimization of 
Gyrokinetic Particle-to-Grid Interpolation for Multicore Processors”, 
IEEE/ACM Supercomputing 2009, to appear.



• Popular method for numerical simulation of many-body 
systems.

• Often implemented from first principles without the need 
of an approximate equation of state

• Applications: plasma modeling, Astrophysics

Particle-In-Cell (PIC) simulations

Grid/mesh overlaying particles to 
measure charge and current densities Generic PIC Schematic
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Plasma Microturbulence Simulations & GTC

• ITER: International collaboration to 
build the first fusion science 
experiment of a self-sustaining fusion 
reaction, the “burning plasma”.

• #1 priority in DoE’s science facility 
investment plan (2003) 
Donut-shaped (“tokamak”) reactor

• GTC: Code developed for Gyrokinetic
particle-in-cell simulations of ion 
temperature gradient (ITG) turbulence.

• Scientists study effects of low-frequency 
microturbulence in fusion plasmas.

• Developed at the Princeton Plasma 
Physics laboratory.

• One of the numerical tools to predict 
efficiency of energy confinement in ITER.



• Two levels of parallelization in the 
GTC MPI Implementation
– 1D domain decomposition (along 

the torus, typically 64- to 128-way)
– Particle decomposition in each 

toroidal domain  
• Particle decomposition among MPI 

processes in each domain requires 
poloidal plane replication.

Parallel Gyrokinetic Toroidal Code (GTC)

3D toroidal mesh

Cross-section: poloidal plane

Uniform in ψ-θ

ψIBM Blue Gene/L run 
(2007) on 32,768 cores:

# toroidal planes: 64
512-way particle 
decomposition

1024 particles/cell
32768 poloidal grid points

• Particle-Grid
interpolation steps 
(“scatter” and “gather”)
constitute 80% of the 
execution time in 
simulations.

• “Scatter” step main
source of inefficiency 
due to poor locality.



Illustration of PIC “Scatter” step 
(or Charge deposition/particle-to-grid 
interpolation) “Push”
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• Grid memory accesses depend on the order in which particles
are processed.

• In a multithreaded implementation with a shared grid, multiple 
threads update grid locations in parallel.

• The case of random particle positions and parallel updates is 
similar to the GUPS benchmark. However, implementations 
usually exploit the fact that PIC is a physical many-body 
simulation method.



1. Gyrating motion of a charged 
particle (ion) replaced by a 
moving ring.

2. Scatter step: ring 
approximated by four points, 
each assigned a quarter of 
the charge to deposit on 
neighboring grid coordinates.

3. The charge at 8-32 distinct 
grid points updated by each 
ion.

4. Gyrokinetic radius (Larmor
radius) of a particle varies in 
simulation.

Illustration of GTC “gyrokinetic” charge 
deposition step: Irregular memory accesses 



• Problem: Large memory footprint due to poloidal plane 
replication (in the 1D grid decomposition scheme) 
hinders GTC scaling for studying ITER-sized devices. 

• Problem: Flat-MPI implementation does not effectively 
exploit multicore nodes.

Our Contributions:
• Memory-efficient multicore optimizations for the GTC charge 

deposition kernel.
• Exploration of several different grid decomposition and 

synchronization strategies.
• Experimental study and performance tuning on emerging cache-

based multi-socket, multicore systems.
– Intel Nehalem, AMD Barcelona, Sun Victoria Falls

GTC PIC charge deposition kernel optimization on 
multicore systems

Madduri, Williams, et al., “Memory-Efficient Optimization of 
Gyrokinetic Particle-to-Grid Interpolation for Multicore Processors”, 
IEEE/ACM Supercomputing 2009, to appear.



• Partition particle updates among threads.
• Thread parallelization complemented by grid 

decomposition and efficient synchronization, to reduce 
shared array update overhead and enhance locality.

Multithreaded parallelization

For each particle do
#1. Get position 

(5 loads from particle arrays,  3 loads 
from grid arrays, 2 stores, 1 sqrt, ~ 20
flops)

#2. Perform four-point gyrokinetic
averaging     

(8-32 updates to charge density grid 
array, 20 stores to auxiliary particle 
arrays, 40 loads from grid arrays, ~ 160
flops)

Charge deposition 
kernel pseudo-code



Shared grid vs. Full replication

Shared: One grid shared 
by all threads.
Most memory-efficient 
approach.

Full replication: Each thread maintains 
a private copy of the grid.
Requires a P-way reduction to get final 
result.

Requires synchronization for 
charge updates.

No synchronization required.

Simplest Pthreads approach. Similar to reference GTC 
MPI implementation.

…

P private copies (replicates) 1 shared



• Assume a radially-binned particle ordering (particle locality in ψ).
– Motivates a radial partitioning of grid.

• The particle Larmor radius is less than the # of grid flux surfaces.
– Motivates a radial grid partitioning + ghost flux surfaces to reduce 

shared grid updates.

Grid partitioning

Thread 3
Thread 2
Thread 1
Thread 0

Thread 2

Additional partitioned grid 
w/ ghost flux surfaces

Partitioned grid

Shared grid Shared grid

Two-way reduction
required.

Three-way reduction
required.



Possible Synchronization Strategies

Lock all θ-ζ
for a given ψ

Lock all ζ for
a given θ-ψ

Atomically increment
one grid point

Individually lock
one grid point

Coarse-grained 
locks

Medium-grained 
locks

Fine-grained 
locks

Atomics

# of lock 
calls per 
particle

3232168

Contention dependent 
on # of particles per cell 
and particle distribution.

Requires radial binning
of particles for ensuring 
low contention

Contention dependent only on # of particles per cell.



• Fused the address calculation and charge deposition 
loops to improve temporal cache locality.

• Data structure changes to reduce misses due to cache 
line fragmentation.

• Fine partitioning of grid points among threads.
• NUMA-aware particle initialization.
• Affinity binding: Pinning threads to cores, static 

scheduling of particle charge decomposition work
• Partial SIMDization of charge updates. 

Other Performance Optimizations



• We assume a radially-binned particle distribution.
– Rate of change of particle position least in the radial direction.
– Periodic radial binning essential for efficient performance.

• We experiment with several different grid sizes and 
particles-per-cell configurations.

GTC problem configurations

# of poloidal
grid points

# of particles 
per cell



Architectural Details of Parallel Systems

AMD Opteron 2356
Barcelona

Intel Gainestown X5550
Nehalem

Sun UltraSparc T5140
Niagara2

73.6 85.3 18.7
Double-precision peak GFlop/s

DRAM Pin Bandwidth (GBytes/s)

21.33 51.2
42.66 (r) 

+ 21.33 (w)
# of threads of execution

8 16 128



Parallel performance with various optimizations
B

ar
ce

lo
na

N
eh

al
em

N
ia

ga
ra

2

Problem size B (150K grid points), 5 particles per cell. 

• Nehalem performance is ~ 2x of Barcelona.
• Pthreads implementations significantly faster 
than the MPI reference code.
• Partitioned grid approaches result in 
substantial performance improvement over 
shared grid variants.
• Atomic increments best-performing 
synchronization strategy.
• Thread pinning most beneficial on Nehalem. 



Parallel Scaling

Problem size B (150K grid points), 5 particles 
per cell. 
Strong scaling results (results normalized to 
single-threaded/single-process performance)
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• SMT gives substantial benefit on Nehalem for 
the Pthreads variants.
• MPI implementation does not scale beyond 1 
process/core.
• Sharp drop in Victoria Falls performance due 
to load imbalance from Larmor radius variation.



Parallel performance with 
problem size variation
Nehalem performance in GFlop/s

Performance 
drop on 
increasing 
grid size 

Performance improvement on 
increasing # of particles per cell



Best “memory-efficient” Pthreads variant
vs. reference MPI implementation
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2 • Substantial speedup for small particles-per-
cell values on all processors.
• Reduction cost reduces as the number of 
particles per cell increases.
• Nehalem speedup due to efficient utilization of 
SMT. 
• Niagara runs suffer due to load imbalance 
from avg. gyroradius variation.

Ratio of the GFlop/s values of memory-efficient 
Pthreads variant & MPI implementation indicated. 



Memory Footprint
Problem size B (150K grid points), 5 particles per cell. 

Nehalem Niagara2

• Memory requirements of the fully replicated version prohibitive!
• Naively using multicore is infeasible.



• Our memory-efficient charge deposition approaches 
(with grid decomposition and synchronization) enable 
solution to large problem instances on current multicore
systems.

• For small problem sizes, we achieve a performance 
improvement of 1.5-4.4x over the optimized MPI 
implementation.

• Maximum Larmor radius value scales as (# of radial flux 
surfaces)/16, leading to load imbalance in the partitioned 
grid approaches on the Niagara2.

• Pipelined atomic intrinsic support would improve 
performance of the memory-efficient Pthreads approach.

Conclusions



• Explore middle ground between the partitioned 
grid and the P-way reduction (full replication) 
approaches.

• Fast implementation of a periodic radial binning 
strategy to enhance locality.

• Investigate charge deposition parallelization on 
local-store based multicores.

• Identify parameters to tune for, algorithmic 
variants to automatically choose. 

Future Work



Questions?

Thank you!
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