
Rajesh Nishtala, Yili Zheng, Paul Hargrove,
Katherine Yelick

Lawrence Berkeley National Lab

Berkeley UPC Group

• PI: Katherine Yelick

• Group members: Filip Blagojevic, Dan
Bonachea, Paul Hargrove, Costin Iancu, Seung-
Jai Min, Yili Zheng

• Former members: Christian Bell, Wei Chen,
Jason Duell, Parry Husbands, Rajesh Nishtala ,
Mike Welcome

• A joint project of LBNL and UC Berkeley

2/25/2010 2SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 3SIAM PP 10 -- UPC at Scale

Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

 Global data view abstraction for productivity
 Vertical partitions among threads for locality control
 Horizontal partitions between shared and private

segments for data placement optimizations
 Friendly to non-coherent cache architecture

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

2/25/2010 4SIAM PP 10 -- UPC at Scale

PGAS Example: Global Matrix
Distribution

Global Matrix View Distributed Matrix Storage

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

9

5

13

3

11

7

15

2

10

6

14

4

12

8

16

2/25/2010 5SIAM PP 10 -- UPC at Scale

UPC Programming Models

SPMD Fork-Join

Synchronization

Bulk Synchronous Parallel with
Computation and Communication
Overlaps

2/25/2010 6SIAM PP 10 -- UPC at Scale

UPC Overview

• PGAS dialect of ISO C99

• Distributed shared arrays

• Dynamic shared-memory allocation

• One-sided shared-memory communication

• Synchronization: barriers, locks, memory
fences

• Collective communication library

• Parallel I/O library
2/25/2010 7SIAM PP 10 -- UPC at Scale

UPC PGAS Example

Thread 1 Thread 2 Thread 3 Thread 4

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

p = malloc(4) *pStandard C

UPC sp = upc_alloc(4) *sp*sp *sp

*p *p

int *p

shared int *sp

2/25/2010 8SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 9SIAM PP 10 -- UPC at Scale

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network Driver and OS Libraries

Translated C code with Runtime Calls

2/25/2010 10SIAM PP 10 -- UPC at Scale

H
ar

d
w

ar
e

D
ep

e
n

d
an

t Lan
gu

age D
ep

e
n

d
an

t

Translation and Call Graph Example
shared [] int * shared sp;
*sp = a;

UPC-to-C Translator

UPCR_PUT_PSHARED_VAL(sp, a);

gasnet_put(sp, a); memcpy(sp, a);

UPC Runtime

GASNet Memory load and store

Is *sp local?
Remote Local

2/25/2010 11SIAM PP 10 -- UPC at Scale

UPC Compiler Implementation

• Source-to-source translator based on the Open64
compiler infrastructure
– Portable: work with most popular back-end compilers;

support remote translation
– High performance: leverage existing Open64 program

analysis and optimizations

• UPC-specific Optimizations
– Message vectorization
– Message strip-mining
– Overlapping communication
– Data reshaping

See Berkeley UPC Publications (http://upc.lbl.gov/publications/#compiler) for further information
on compiler analysis and optimizations.

2/25/2010 12SIAM PP 10 -- UPC at Scale

UPC Runtime Implementation

• Modular design with a well-defined API
– Support multiple front-end compilers

– Enable runtime optimizations

• Light-weight implementation

• Efficient shared-memory management

• Fast intra-node communication via hardware
shared-memory
– Pthreads

– Processes with POSIX shared-memory

2/25/2010 13SIAM PP 10 -- UPC at Scale

GASNet Implementation

• Core API
– Active Messages

• Extended API
– Non-Blocking One-sided Communication

– Collective Communication

– Point-to-Point Synchronizations

– Vector, Indexed, Stride Data Transfer

• Portable tools
– timers, memory barriers, atomic ops and portable

data types

2/25/2010 14SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 15SIAM PP 10 -- UPC at Scale

Active Messages

• Active messages = Data + Action

• Key enabling technology for both
one-sided and two-sided
communications
– Software implementation of Put/Get

– Eager and Rendezvous protocols

• Remote Procedural Calls
– Facilitate “owner-computes”

– Spawn asynchronous tasks

Request

Reply

A B

Request
handler

Reply
handler

2/25/2010 16SIAM PP 10 -- UPC at Scale

One-Sided vs. Two-Sided Messaging

• Two-sided messaging
– Message does not contain information about the final

destination; need to look it up on the target node
– Point-to-point synchronization implied with all transfers

• One-sided messaging
– Message contains information about the final destination
– Decouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network

interface

memory

host

CPU

2/25/2010 17SIAM PP 10 -- UPC at Scale

GASNet Bandwidth on BlueGene/P

• Torus network
– Each node has six 850MB/s*

bidirectional links

– Vary number of links from 1 to 6

• Consecutive non-blocking puts
on the links (round-robin)

• Similar bandwidth for large-size
messages

• GASNet outperforms MPI for
mid-size messages
– Lower software overhead

– More overlapping

* Kumar et. al showed the maximum
achievable bandwidth for DCMF
transfers is 748 MB/s per link so we
use this as our peak bandwidth
See “The deep computing messaging
framework: generalized scalable
message passing on the blue gene/P
supercomputer”, Kumar et al. ICS08

G
O
O
D

See “Scaling Communication Intensive Applications on
BlueGene/P Using One-Sided Communication and
Overlap”, Rajesh Nishtala, Paul Hargrove, Dan Bonachea,
and Katherine Yelick, IPDPS 2009

2/25/2010 18SIAM PP 10 -- UPC at Scale

GASNet Latency on Cray XT4

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

L
a
te

n
c
y
 o

f
B

lo
c
k
in

g
 P

u
t

(µ
s
)

mpi-conduit Put

MPI Ping-Ack

portals-conduit Put

(d
o

w
n

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

2/25/2010 19SIAM PP 10 -- UPC at Scale

GASNet Bandwidth on Cray XT4

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

B
a

n
d

w
id

th
 o

f
N

o
n

-B
lo

c
k

in
g

 P
u

t
(M

B
/s

)

portals-conduit Put

OSU MPI BW test

mpi-conduit Put

(u
p

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

2/25/2010 20SIAM PP 10 -- UPC at Scale

GASNet vs. MPI on InfiniBand (Jul ‘05)

2/25/2010 21SIAM PP 10 -- UPC at Scale

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a

n
d

w
id

th
 (

K
B

/s
)

gasnet_put_nbi_bulk

gasnet_put_bulk

MPI Flood

MPI Ping/Ack

Relative BW (put_nbi_bulk/MPI_Flood)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000

Size (bytes)

(u
p

 i
s

 g
o

o
d

)

Slide source: Experiences Implementing
Partitioned Global Address Space (PGAS)
Languages on InfiniBand, Paul Hargrove et al

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 22SIAM PP 10 -- UPC at Scale

Collective Communication Topologies

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15 binomial tree

0

1

2

3

125

8

9

4 6 7 10 11 13 14

0

1

2

3

12

5

8

9

4

6

7

10

11

13

14

15

Binary Tree

Fork Tree

0

2

34

6

17

5

Radix 2 Dissemination

2/25/2010 23SIAM PP 10 -- UPC at Scale

GASNet Collectives Organization

GASNet Collectives API

Portable
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory
Collectives

2/25/2010 24SIAM PP 10 -- UPC at Scale

Auto-tuning Collective Communication

2/25/2010 SIAM PP 10 -- UPC at Scale 25

Offline tuning

 Optimize for platform
common characteristics

 Minimize runtime
tuning overhead

Online tuning

 Optimize for application
runtime characteristics

 Refine offline tuning
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution
 Process/thread

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get
 Collection of well-

known algorithms
Communication topology
 Tree type
 Tree fan-out

Implementation-specific
parameters
 Pipelining depth
 Dissemination radix

Broadcast on Sun Constellation
(1024 cores)

• 4-nomial is consistently a “good”
performer

• 8-nomial is best at < 2k bytes

Broadcast on Cray XT4 (2048 cores)

• 4-nomial is best < 2k

• choosing 4-nomial at 32k leads to
2x degradation in performance

Broadcast

2/25/2010 26SIAM PP 10 -- UPC at Scale

Nonblocking Broadcast
• Benchmark overlaps collectives with each other

– Collectives pipelined so that the network resources are more effectively used

– 100-200 microsecond difference

– We show later how this can be incorporated into a real application

– All collectives built as state machines

Cray XT4 Nonblocking Broadcast Performance (1024 Cores)

2/25/2010 27SIAM PP 10 -- UPC at Scale

Reduce

8-byte Reduce on Sun Constellation

• 8-nomial tree delivers best or
close to optimal performance

• GASNet outperforms vendor-MPI
by 18% at 1k cores and 25% at 2k
cores

Reduce on Cray XT4 (2048 cores)

• 4-nomial consistently gives a
good algorithm

• Average of 25% better
performance over 8-nomial

• GASNet out performs MPI by >
factor of 2x in most cases

2/25/2010 28SIAM PP 10 -- UPC at Scale

Scatter/Gather
Scatter on 1536 cores of Cray XT5

• Loose synch. offers 4x performance
improvement at low sizes

• Difference decreases at higher
message sizes

• GASNet is able to deliver better
performance for both modes
compared to vendor MPI library

Gather on 1536 cores of Cray XT5

• Similar results as Scatter

• Looser synchronization continues to
deliver good performance upto 4k
bytes

• GASNet is able to consistently
outperform vendor MPI library

2/25/2010 29SIAM PP 10 -- UPC at Scale

Exchange (Alltoall)
• Dissemination algorithm by Bruck et al. (1997)

– Send the data multiple times through the network before it reaches the final destination

– Uses less messages at the cost of more bandwidth

• Highlights a tradeoff between algorithmic choice

– Intuition suggests there is a crossover point between the algorithms

• Finding the best algorithm is a tuning question that we will address in the automatic tuner
section

• Penalty for picking bad algorithm is
high

 Radix-2 is best at 8 bytes but
worst at 16k bytes

 Flat algorithm becomes the
best between 512 and 1k byte
exchange

• order of magnitude worse at
8 bytes

• 28% (~73 ms) faster at 16
Kbytes Exchange on Sun Constellation (256 cores)

2/25/2010 30SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 31SIAM PP 10 -- UPC at Scale

Matrix-Multiplication on Cray XT4

2/25/2010 SIAM PP 10 -- UPC at Scale 32

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

G
Fl

o
p

s

Cores

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

Choleskey Factorization on Sun
Constellation (Infiniband)

3118

3757

4097

0 1000 2000 3000 4000 5000

Naïve UPC
(get-based)

Hand-coded
UPC

UPC team
collectives

GFlops

2048 cores on Ranger
Matrix size: 240K

2/25/2010 33SIAM PP 10 -- UPC at Scale

FFT Performance on Cray XT4

3-D FFT (1024 Cores)

G
O
O
D

2/25/2010 34SIAM PP 10 -- UPC at Scale

FFT Performance on BlueGene/P
HPC Challenge Peak as of July 09 is ~4.5 TFlops
on 128k Cores

 PGAS implementations
consistently outperform MPI

 Leveraging communication and
computation overlaps yields best
performance

• More collectives in flight and
more communication leads to
better performance

• At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

 Numbers are getting close to HPC
record

 Future work to try to beat
the record

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

o
p

s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

2/25/2010 35SIAM PP 10 -- UPC at Scale

Summary

• Demonstrated scalability to tens of thousands of
cores

• Global address space improves productivity
• Data partitioning enables performance

optimizations
• Interoperable with other programming models

and languages including MPI, FORTRAN, C++
• Growing UPC community with actively developed

and maintained software implementations
– Berkeley UPC and GASNet: http://upc.lbl.gov
– Other UPC compilers: Cray UPC, GCC UPC, HP UPC,

IBM UPC, MTU UPC
2/25/2010 36SIAM PP 10 -- UPC at Scale

