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GPU Cluster with Hybrid Memory

Computer Node

CPU Memory

GPU

GPU
Memory

CPU CPU

GPU

GPU
Memory

Computer Node

CPU Memory

GPU

GPU
Memory

CPU CPU

GPU

GPU
Memory

Network

2/24/2010 2SIAM PP10 -- Extending Unified Parallel C for GPU Computing



Current Programming Model 
for GPU Clusters

MPI + CUDA/OpenCL
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PGAS Programming Model for 
Hybrid Multi-Core Systems
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PGAS Example: Global Matrix 
Distribution

Global Matrix View Distributed Matrix Storage
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PGAS Example: Fast Fourier Transform

GPU I

Global Matrix View Distributed Matrix Storage

Shared [4] A[4][4];

1D_FFT(A); // row fft

A’=AT;  

1D_FFT(A’); // col fft

A= A’T
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Hybrid Partitioned Global 
Address Space
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 Each thread has only one shared segment, which can be either in 
host memory or in GPU memory, but not both. 

 Decouple the memory model from execution models; therefore it 
supports various execution models.

 Backward compatible with current UPC and CUDA/OpenCL
programs.
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Execution Models

• Synchronous model

• Virtual GPU model

• Hybrid model 
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UPC Overview

• PGAS dialect of ISO C99

• Distributed shared arrays

• Dynamic shared-memory allocation

• One-sided shared-memory communication 

• Synchronization: barriers, locks, memory 
fences

• Collective communication library

• Parallel I/O library
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Hybrid PGAS Example
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p = malloc(4) *p

sp = upc_alloc(4)*sp*sp

Standard C

UPC with GPU 
shared heap

UPC sp = upc_alloc(4) *sp*sp

*sp

*sp

*p *p

int *p

shared int *sp
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Data Transfer Example
• MPI+CUDA

• UPC with GPU extensions 

Process 1:
send_buffer = malloc(nbytes);
cudaMemcpy(send_buffer, src); 
MPI_Send(send_buffer);
free(send_buffer);

Process 2:
recv_buffer = malloc(nbytes);

MPI_Recv(recv_buffer);
cudaMemcpy(dst, recv_buffer);
free(recv_buffer);

Thread 1:
upc_memcpy(dst, src, nbytes);

Advantages of PGAS on GPU clusters
 Don’t need explicit buffer management by the user.
 Facilitate end-to-end optimizations such as data transfer pipelining.
 One-sided communications map well to DMA transfers for GPU devices.
 Concise code

copy nbytes data from src on GPU 1 to dst on GPU 2

Thread 2:
// no operation required
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PGAS GPU Code Example

• Thread 1 • Thread 2

// use GPU memory for shared segment
bupc_attach_gpu(gpu_id);

shared [] int * shared  sp;

// shared memory is allocatd on GPU 
sp = upc_alloc(sizeof(int)); 
*sp = 4; // write to GPU memory
upc_barrier;

shared [] int * shared sp;

upc_barrier;
// read from remote GPU memory
printf(“%d”, *sp); 
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Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library 

Network Drivers and OS Libraries

Translated C code with Runtime Calls
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Translation and Call Graph Example

shared [] int * shared sp;
*sp = a;

UPC-to-C Translator

UPCR_PUT_PSHARED_VAL(sp, a);

gasnet_put(sp, a); gasnet_put_to_gpu(sp, a);

UPC Runtime

GASNet GASNet+CUDA

Is *sp on 
GPU?

No Yes

2/24/2010 14SIAM PP10 -- Extending Unified Parallel C for GPU Computing



Active Messages

• Active messages = Data + Action

• Key enabling technology for both 
one-sided and two-sided 
communications
– Software implementation of Put/Get

– Eager and Rendezvous protocols

• Remote Procedural Calls
– Facilitate “owner-computes”

– Execute asynchronous tasks

Request

Reply

A B

Request 
handler

Reply 
handler
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GASNet Extensions for GPU
One-sided Communication

• How to transfer to/from 
remote GPU device memory?
– Active Messages (AM)
– Need to execute CUDA 

operations outside of AM 
handler context because they 
may block

– Solution: asynchronous GPU 
task queue

• How to know when the data 
transfer is done?
– Send an ACK message after 

the GPU op is done on the 
GPU device

– Solution: GPU task queue 
polling and callback support

Host1 Host2

GPU2GPU1

Active 
Message 
Request

Active 
Message 

Reply
CUDA 

Memcpy
CUDA 

Memcpy
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Implementation

• UPC-to-C translator
– No change because the UPC runtime API is intact.
– Compile UPC code and CUDA code separately and then link 

the object files with libs together.

• UPC runtime extensions
– Shared-heap management for GPU device memory
– Accesses to shared data on GPU (via pointer-to-shared)
– Interoperability of UPC and GPU (CUDA)

• GASNet extensions
– Put and Get operations for GPU
– Asynchronous GPU task queue for running GPU operations 

outside of AM handler context
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Summary

• Runtime extensions for enabling PGAS on GPU clusters
– Unified API for data management and communication 
– High-level expressions of data movement enabling end-to-

end optimizations
– Compatible with different execution models and existing 

GPU applications

• Reusable modular components in the implementation
– Task queue for asynchronous task execution
– Communication protocols for heterogeneous processors 
– Portable to other GPU SDK, e.g., OpenCL.  Platform (CUDA) 

specific codes are limited and encapsulated.

• Work in progress
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Thank You!

• MS 31 

UPC at Scale

1:20 PM - 3:20 PM

Room: Leonesa II

• MS 52

Getting Multicore Performance with UPC

1:20 PM - 3:20 PM

Room: Eliza Anderson Amphitheater
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