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NERSC Represents a Broad HPC
Workload including Data and Simulation

NERSC computing for science
- * 4500 users, 600 projects

SOOI R sl - ~65% from universities, 30% labs

FHISIES P - 1500 publications per year!

».h e
Journal of

gmre U *© 1.3PF Petaflop Cray system, Hopper

Struct - 8 PB filesystem; 250 PB archive

» Several systems for genomics,
astronomy, visualization, etc.

~650 applications

» 75% Fortran, 45% C/C++, 10% Python
» 85% MPI, 25% with OpenMP

* 10% PGAS or global objects

» 70% with checkpointing for resilience

These are self-reported, likely low
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Shared Memory vs. Message Passing

Shared Memory Message Passing

« Advantage: Convenience * Advantage: Scalability
—Can share data structures —Locality control
—-Just annotate loops —Communication is all
~Closer to serial code explicit in code (cost

- Disadvantages transparency)
-No locality control * Disadvantage
_Does not scale —Need to rethink data

structures

-Race conditions
-Tedious pack/unpack code

-When to say “receive’
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Limitations of Existing Programming Models

« We can run 1 MPI process per core, but there are
problems with 6-12+ cores/socket:

- Insufficient memory: user level
data and internal buffers

B "Running Time"
=="Memory per Node"

- Runtime overheads: copying and fggg | 12 _
synchronization 1600 10 3§
 OpenMP, Pthreads, or other _ 1400 Py
M 8 3
shared memory models 9 1200 Z
- No control over locality, e.g., Non-g 1000 - 6 g
Uniform Memory Access = 800 4 2
- No explicit memory movement, 288 | g
e.g., accelerators or NVRAM 200 | 2 2
* Tuning is non-obvious 0 0
- Tradeoff between speed and 11213 6 12
memory footprint OpenMP threads / MPI tasks

Nick Wright, John Shalf et al, NERSC/Cray Center of Excellence TI}Iﬂ
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Programming Challenges and Solutions

Message Passing Programming

Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

8/31/13

Global Address Space Programming

Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries
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Science Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random
Independent Neighbor Simulations access, large

Jobs for Simulations data Analysis
Analysis and
Simulations

NS Y
Data analysis and simulation
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PGAS Languages

» Global address space: thread may directly read/write remote data
* Hides the distinction between shared/distributed memory

* Partitioned: data is designated as local or global
* Does not hide this: critical for locality and scaling

Global address space
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UPC Outline

Background

UPC Execution Model

Basic Memory Model: Shared vs. Private Scalars
Synchronization

Collectives

Data and Pointers

Dynamic Memory Management

Performance

Beyond UPC
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History of UPC

* Initial Tech. Report from IDA in collaboration with LLNL
and UCB in May 1999 (led by IDA).
-Based on Split-C (UCB), AC (IDA) and PCP (LLNL)

« UPC consortium participants (past and present) are:

-ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS,
Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGl, Sun
Microsystems, UCB, U. Florida, US DOD

- UPC is a community effort, well beyond UCB/LBNL

 Design goals: high performance, expressive, consistent
with C goals, ..., portable

« UPC Today

- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc
from Intrepid, Berkeley UPC)

- “Pseudo standard” by moving into gcc trunk
—Most widely used on irregular / graph problems today

7 CALI
o mR = A
% i
W 73113 o K I
3B
4 9 '9/0 .
N 1868 o

BERKELEY LAB



7/3113

UPC Execution
Model

10



UPC Execution Model

* A number of threads working independently in a SPMD
fashion

- Number of threads specified at compile-time or run-time;
available as program variable THREADS

- MYTHREAD specifies thread index (0. . THREADS-1)

- upc barrier is a global synchronization: all wait

- There is a form of parallel loop that we will see later
 There are two compilation modes

- Static Threads mode:
« THREADS is specified at compile time by the user
* The program may use THREADS as a compile-time constant

— Dynamic threads mode:
» Compiled code may be run with varying numbers of threads

BERKELEY LAB



Hello World in UPC

* Any legal C program is also a legal UPC program

* [f you compile and run it as UPC with P threads, it will
run P copies of the program.

 Using this fact, plus the identifiers from the previous
slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {

printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

= = $
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Example: Monte Carlo Pi Calculation

» Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

—Area of square =2 = 1

—Area of circle quadrant = %4 * xt r? = /4
* Randomly throw darts at x,y positions
« If X2 + y2 < 1, then point is inside circle
« Compute ratio:

—# points inside / # points total

- 1 = 4"ratio

r =1

(€ ) 73113 13




Pi in UPC

 Independent estimates of pi:

main (int argc, char **argv) ({
int i, hits, trials = 0;
double pi;

Each thread gets its own
copy of these variables

atoi (argv[1l]);

else trials

if (arge '= 2)trials = 1000000; |Each thread canuse

input arguments

Initialize random in

srand (MYTHREAD*17) ;

math library

pi = 4.0*hits/trials;

for (1=0; i1 < trials; i++) hits += hit();

printf ("PI estimated to 3%f.", pi);

B WLE

Each thread calls “hit” separately
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Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

* Function to throw dart and calculate where it hits:
int hit () {
int const rand max = OxFFFFFF;
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;

}

;a* KR, A
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Private vs. Shared Variables in UPC

« Normal C variables and objects are allocated in the private
memory space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;

» Shared variables may not have dynamic lifetime: may not

occur in a function definition, except as static. \Why?

Thread, Thread, Thread
(7))
)
o
T o ours: | Shared
© 0O
© @©
- Q : : :
g » mine: mine: eoeo mine:
9 Private
O
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Pi in UPC: Shared Memory Style

 Parallel computing of pi, but with a bug
shared int hits: shared variable to
record hits

main (int argc, char **argv) ({
int i, my trials = 0;

int trials = atoi(argv([l]); divide work up evenly
my trials = (trials + THREADS - 1)/THREADS;
srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++)

hits += hit();
upc _barrier;

accumulate hits

if (MYTHREAD == 0) {
printf ("PI estimated to %£.", 4.0*hits/trials);
}
} What is the problem with this program?
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Shared Arrays Are Cyclic By Default

» Shared scalars always live in thread 0
« Shared arrays are spread over the threads
« Shared array elements are spread across the threads

shared int x[THREADS] [* 1 element per thread */
shared int y[3] [THREADS] /* 3 elements per thread */
shared int z[3] [3] [* 2 or 3 elements per thread */

* In the pictures below, assume THREADS =4
-Red elts have affinity to thread 0O

Think of linearized

C array, then map
X . in round-robin

¢ As a 2D array, y is
y . . . logically blocked
by columns
Z .‘—
. . Z is not
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Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum

all_hits is
shared int all hits [THREADS]; shared by all
main (int argc, char **argv) { processors,

... declarations an initialization code omitted just as hits was

for (i=0; 1 < my trials; i++)
all hits[MYTHREAD] += hit() ;

upc_barrier;

if (MYTHREAD == 0) {

for (i=0; i < THREADS; i++) hits += all hits[i];

printf ("PI estimated to %£.", 4.0*hits/trials);

update element
with local affinity

}
= A
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UPC Global Synchronization

« UPC has two basic forms of barriers:

— Barrier: block until all other threads arrive
upc_barrier
- Split-phase barriers
upc notify; this thread is ready for barrier
do computation unrelated to barrier
upc wait;  wait for others to be ready

Optional labels allow for debugging
#define MERGE BARRIER 12
if (MYTHREAD%2 == 0) ({

upc_barrier MERGE BARRIER;
} else {

upc_barrier MERGE BARRIER;

: }
) 73113 2 il
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Synchronization - Locks

Locks in UPC are represented by an opaque type:

upc _lock t

Locks must be allocated before use:

upc_lock t *upc all lock alloc(void);
allocates 1 lock, pointer to all threads

upc _lock t *upc global lock alloc(void);
allocates 1 lock, pointer to one thread

To use a lock:
void upc_ lock (upc lock t *1)

void upc _unlock (upc_lock t *1)
use at start and end of critical region

Locks can be freed when not in use
void upc lock free(upc lock t *ptr);

N\ -
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Pi in UPC: Shared Memory Style

 Parallel computing of pi, without the bug

shared int hits;

main (int argc, char **argv) ({
int i, my hits, my trials = 0; create a lock
upc lock t *hit lock = upc all lock alloc();
int trials = atoi(argv]|l]);
my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit(); locally

upc_lock (hit lock) ;

hits += my hits; accumulate

upc_unlock (hit_lock) ; across threads

upc_barrier;

if (MYTHREAD == 0)

printf ("PI: %$f", 4.0*hits/trials);

SETY, } >
3 7/31/13 o4 ;:ﬁﬂ
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Recap: Private vs. Shared Variables in UPC

* We saw several kinds of variables in the pi example
-Private scalars (my hits)
-Shared scalars (hits)
-Shared arrays (all hits)
-Shared locks (hit lock)

Thread, Thread, Thread,
where:
hits: n=Threads-1
- hit lock: |
o
S Q | all hits[0]: || all hits[1]: all hits[n]: || Shared
© ©
—_ O
g 7 my hits: my hits: (XX my hits:
[<) Private
O
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UPC Collectives in General

* The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec 1.2.pdf

* It contains typical functions:
- Data movement: broadcast, scatter, gather, ...
- Computational: reduce, prefix, ...

* Interface has synchronization modes:

— Avoid over-synchronizing (barrier before/after is simplest
semantics, but may be unnecessary)

- Data being collected may be read/written by any thread
simultaneously

» Simple interface for collecting scalar values (int, double,...)
- Berkeley UPC value-based collectives
— Works with any compiler
— http://upc.lbl.gov/docs/user/README-collectivev.txt

# 2 cAu = $
) 731113 27 [l
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Pi in UPC: Data Parallel Style

* The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

« Use a reduction for better scalability

#include <bupc collectivev.h> Berkeley collectives

[/ no shared variables
main (int argc, char **argv) ({

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op

bupc allv reduce(int, my hits, 0, UPC ADD) ;
[/ barrier implied by collective
if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);

. } = ]
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Berkeley UPC (Value-Based) Collectives

« A portable library of collectives on scalar values (not arrays)

X = bupc_allv_reduce(double, x, 0, UPC_ADD)
TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)

General arguments:

rootthread is the thread ID for the root (e.g., the source of a broadcast)

All 'value' arguments indicate an I-value (i.e., a variable or array element, not a
literal or an arbitrary expression)

All 'TYPE' arguments should the scalar type of collective operation
upc_op_tis one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR,
UPC_XOR, UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX

Computational Collectives: reductions and scan (parallel prefix)
Data movement collectives: broadcast, scatter, gather

Gather takes a 'value’ from each thread and places them (in order by source
thread) into the local array on the root thread.

Permute perform a permutation of 'value's across all threads. Each thread
passes a value and a unique thread identifier to receive.

E = o
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Full UPC Collectives

- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays

- When can a collective argument begin executing?

* Arguments with affinity to thread i/ are ready when thread i calls the
function; results with affinity to thread / are ready when thread i returns.

« This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

shared

—tl)
—tl)

local
dst dst dst

SrcC SrcC

Gt
Gt

Slide source: Steve Seidel, MTU 3 [ZReRly
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UPC Collective: Sync Flags

In full UPC Collectives, blocks of data may be collected

A extra argument of each collective function is the sync mode of type
upc_flag t.

Values of sync mode are formed by or-ing together a constant of the form
UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNCQC), then if Xis:
- NO the collective function may begin to read or write data when the first thread
has entered the collective function call,
- MY the collective function may begin to read or write only data which has
affinity to threads that have entered the collective function call, and
- ALL the collective function may begin to read or write data only after all threads
have entered the collective function call
and if Yis

— NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

— ALL the collective function call may return only after all reads and writes of data
are complete.

= A
7/31/13 31 Il
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Example: Vector Addition

- Questions about parallel vector additions:
- How to layout data (here it is cyclic)
- Which processor does what (here it is “owner computes”)

/* vadd.c */
#include <upc relaxed.h>
#define N 100*THREADS

cyclic layout

shared int v1[N], v2[N]- sum[N];

void main () {

int i; / owner computes
for (i=0; i<N; 1i++)

if (MYTHREAD == i%THREADS)
sum[i]=v1[i]+Vv2[i];

~S
A
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Work Sharing with upc_forall()

* The idiom in the previous slide is very common
- Loop over all; work on those owned by this proc
« UPC adds a special type of loop
upc forall (init; test; loop; affinity)
statement;
 Programmer indicates the iterations are independent
- Undefined if there are dependencies across threads

« Affinity expression indicates which iterations to run on each thread.
It may have one of two types:

- Integer: af£finity%$THREADS iS MYTHREAD
- Pointer: upc_threadof (affinity) is MYTHREAD
e Syntactic sugar for loop on previous slide
- Some compilers may do better than this, e.g.,
for (1i=MYTHREAD; i<N; i+=THREADS)
- Rather than having all threads iterate N times:
for (i=0; i<N; i++) if (MYTHREAD == i%THREAD

E = o
) 773113 B
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Vector Addition with upc_forall

* The vadd example can be rewritten as follows
« Equivalent code could use “&sum[i]” for affinity

* The code would be correct but slow if the affinity
expression were i+1 rather than i.
#define N 100*THREADS

The cyclic data
shared int v1[N], v2[N], sum[N]; distribution may
perform poorly on

void main () { some machines

int i;
upc_forall (i=0; i<N; i++; 1)

sum[i]=v1[i]+Vv2[i];

St

) 73113 35 A
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Blocked Layouts in UPC

« If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

* Instead, want a blocked layout

» Vector addition example can be rewritten as follows using a blocked
layout

#define N 100*THREADS
shared int [[*]|Vv1[N], v2[N], sum[N]; kﬂookedlayout

void main() {
int i;
upc_ forall (i=0; i<N; i++;|&sum[i])

sum[i]=v1[i]+v2[i];

}
¢ ) 713113 37 Rl
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Layouts in General

 All non-array objects have affinity with thread zero.
 Array layouts are controlled by layout specifiers:
-Empty (cyclic layout)
-[*] (blocked layout)
—[0] or [] (indefinite layout, all on 1 thread)
—[b] or [b1][b2]...[bn] = [b1*b2*...bnN] (fixed block size)
» The affinity of an array element is defined in terms of:
-block size, a compile-time constant
-and THREADS.
* Element i has affinity with thread
(1 / block size) % THREADS
* In 2D and higher, linearize the elements asina C

_~. representation, and then use above mapping
(L 5) 731113 38




2D Array Layouts in UPC

« Array a1 has a row layout and array a2 has a block row
layout.

shared [m] int al [n][m];
shared [k*m] int a2 [n][m];

* If (k + m) % THREADS = = 0 them a3 has a row layout
shared int a3 [n][m+k];

* To get more general HPF and ScaLAPACK style 2D
blocked layouts, one needs to add dimensions.

« Assume r*c = THREADS;

shared [b1][b2] int a5 [m][n][r][c][b1][b2];
* or equivalently

shared [b1*b2] int a5 [m][n][r][c][b1][b2];
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Pointers to Shared vs. Arrays

- In the C tradition, array can be access through pointers
 Here is the vector addition example using pointers

#define N 100*THREADS
shared int v1[N], v2[N], sum|[N];

void main () {

int i; ] [ ] [ ]
shared int *pl, *p2; Y& 7
p1”

pl=vl; p2=v2;
for (i=0; i<N; i++, pl++, p2++ )
if (i %THREADS= = MYTHREAD)
sum[i]= *pl + *p2;

) 731113 40
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UPC Pointers

Where does the pointer point?

Local | Global (to shared)
Where Pri
rivate 1 2
does the P P
pointer
reside? Shared p3 p4
int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */
Shared to local memory (p3) is not recommended.

. > A
3 7/31/13 41 el
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UPC Pointers

Thread, Thread, Thread,

g p3: p3: p3:

S .1
52 p4:| 7 p4: - > p4: Shared
o
st
(D_,a p1|: / p1:’/V e0eo p1:”v

g p2:/ p2: -~ p2: Private

int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */

Pointers to shared often require more storage and are more costly to
_dereference; they may refer to local or remote memory.

& A ) =~ /\
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Common Uses for UPC Pointer Types

int *pl;
 These pointers are fast (just like C pointers)
* Use to access local data in part of code performing local work

« Often cast a pointer-to-shared to one of these to get faster
access to shared data that is local

shared int *p2;
 Use to refer to remote data

« Larger and slower due to test-for-local + possible
communication

int *shared p3;

 Not recommended

shared int *shared p4;

* Use to build shared linked structures, e.g., a linked list

~S
A
4 3 ;hl |“'|

BERKELEY LAB



UPC Pointers

« In UPC pointers to shared objects have three fields:
- thread number
— local address of block

- phase (specifies position in the block)

Virtual Address Thread Phase

 Example implementation

Phase Thread Virtual Address
63 49 48 38 37 0

> A
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UPC Pointers

» Pointer arithmetic supports blocked and non-blocked
array distributions

« Casting of shared to private pointers is allowed but
not vice versa !

* When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

« Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast
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Special Functions

« size tupc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

* size tupc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

« shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

i LSS TN
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Global Memory Allocation

shared void *upc _alloc(size t nbytes);
nbytes : size of memory in bytes

* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the shared
space with affinity to itself.

shared [] double [n] p2 = upc alloc(n&sizeof (double) ;

" Thread, Thread, Thread,_
8893
© 5 3|| ndoubles [i| ndoubles n doubles Shared
) g 7

f

p2: A p2: (XX p2: / Private

void upc free (shared void *ptr);

« Non-collective function; frees the dynamically allocated shared
memory pointed to by ptr

“00‘ ~ !
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Global Memory Allocation

shared void *upc global alloc(size_ t nblocks,
size t nbytes);

nblocks : number of blocks
nbytes : block size
* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the
shared space with the shape:

shared [nbytes] char[nblocks * nbytes]

shared void *upc all alloc(size t nblocks,
size t nbytes);

 The same result, but must be called by all threads together
« All the threads will get the same pointer

) 73113 48
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Distributed Arrays Directory Style

 Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS] ;
directory[i]=upc alloc(local size*sizeof (double));

1171|171 |directory

i N — //37
E """""""""""""""" T~
:___i) _____________________________ jf/ _[_/
physical and
* These are also more general: | conceptual
- Multidimensional, unevenly distributed 3D array

_ layout
~. * Ghost regions around blocks —
) 7/3113 20 Rl

|

BERKELEY LAB



Memory Consistency in UPC

» The consistency model defines the order in which one thread may
see another threads accesses to memory

- If you write a program with unsychronized accesses, what

happens?
- Does this work?
data = .. while ('flag) { }:
flag = 1; .. = data; // use the data

« UPC has two types of accesses:
— Strict: will always appear in order
- Relaxed: May appear out of order to other threads
» There are several ways of designating the type, commonly:

- Use the include file:
#include <upc relaxed.h>

- Which makes all accesses in the file relaxed by default
— Use strict on variables that are used as synchronization (£lag)

RN )
¢ ) 713113 50 Rl
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Synchronization- Fence

* Upc provides a fence construct

—-Equivalent to a null strict reference, and has the
syntax
* upc_fence;
-UPC ensures that all shared references issued
before the upc _fence are complete
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Berkeley UPC Compiler

-

Used by bupc and
gcc-upc
Platform-
independent
Network- _Compiler-
independent independent
P Language-
GASNet Communication System independent
Used by Cray

UPC, CAF, Network Hardware
Chapel, Titanium,
and others




PGAS Languagdes have Feriorm e

Strategy for acceptance of a new language
» Make it run faster than anything else

Keys to high performance
 Parallelism:

—-Scaling the number of processors
« Maximize single node performance

-Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

« Avoid (unnecessary) communication cost
-Latency, bandwidth, overhead

-Berkeley UPC and Titanium use GASNet
communication layer

» Avoid unnecessary delays due to dependencies

-Load balance; Pipeline algorithmic dependencies
(C ) 731113 >4




One-Sided vs Two-Sided

one-sided put message
address data payload ——* host
Py CPU
network
two-sided message Jec UL
message id data payload — memory

* A one-sided put/get message can be handled directly by a network
interface with RDMA support

- Avoid interrupting the CPU or storing data from CPU (preposts)

» A two-sided messages needs to be matched with a receive to
identify memory address to put data

- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

TN —
0 ) 7131113 55 el
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Bandwidths on Cray XE6 (Hopper)

18000

=¢=Berkeley UPC

16000
=@=Cray UPC

14000

=i=Cray MPI

12000

10000

8000

w
—
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=
g
<
wid
=
3
S
c
©
[11]

6000

4000

2000

2048 8192
Msg. size

512
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One-Sided vs. Two-Sided: Practice

900
800 —&— GASNet put (nonblock)"
—=— MPI Flood ‘/./C//r‘;.;.=.7
700 o /
. g 600 NERSC Jacquard
o = machine with
§, E 500 Relatlve BWGASNet/MPI) — Opteron
0 1§5 400 /.’  processors
o T ;2
3§ 300 / 20 Ine—"\_ -
: o . AN
200 N
/.//l/ 19 | —
1 OO 10 1000 100000 10000000——
Size (bytes)
0 JElélﬁ.,/r | | |
10 100 1,000 10,000 100,000 1,000,000
Size (bytes)

* InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
» Half power point (N %2 ) differs by one order of magnitude
 This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea ~

A
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Ping Pong Latency on a Cray XE6 (Hopper)

—UPC MPI - Large Pages —MPI - Regular Pages
10000

1000

100

Time (us)

10

X © 0 ) N @‘Lb‘ b‘lxb&‘b%‘lxb&‘b@‘bb‘

A
7/31/13 58 ’\ 0
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Bandwidths on Cray XE6 (Hopper)

—UPC —MPI Large MPI

M
-~
[01]
<
L
whd
2
3
©
c
©
m

O _
b‘%\@‘b‘]’@b‘%%@\%%b‘b‘%@q"/%b‘ %Q"\“/b?‘%'\@
v 9 \Q N

Message Size (Bytes)

A
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(down is good)

GASNet: Portability and High-Performance

8-byte Roundtrip Latency
24.2

25

B MPIping-pong

m GASNet put+sync

N
o

N
a

Roundtrip Latency (usec)

Elan3/Alpha Elan4/IA64 Myrinet/x86 B/G5 IB/Opteron SP/Fed

GASNet better for latency across machines

7/3113 60

Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet: Portability and High-Performance

Flood Bandwidth for 2MB messages

100%
o o5 228 1504 1490

795 799

90% -

80% -

70% -

(up is good)
Percent HW peak (BW in MB)

30% -

20% -

10% -

m MPI B GASNet

0% -

BElan3/Alpha Ean4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

GASNet at least as high (comparable) for large messages
7/31/13 o [l

5 Joint work with UPC Group; GASNet design by Dan Bonachea BERNETEVIEAD




GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages
100%
90% - m MPI
B GASNet
80% -
x 70% -
©
)]
Q. 60% -
I 50% - 750
wid
c
8 40% -
— | 4
O ()
S o 30% -
(@]
2 20% -
Q.
=]
~ 10% -
0% NN W NN NN RN R
Han3/Alpha BEan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

GASNet excels at mid-range sizes: important for overlap
7/3113 o> [l

s’ Joint work with UPC Group; GASNet design by Dan Bonachea
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Communication Strategies for 3D FFT

chunk = all rows with same destination

» Three approaches: X
e Chunk:

« Wait for 2" dim FFTs to finish
* Minimize # messages
 Slab:

» Wait for chunk of rows destined for 1
proc to finish

» Overlap with computation
* Pencil:
» Send each row as it completes
» Maximize overlap and
* Match natural layout

pencil =1 row

slab = all rows in a single plane with
same destination

-3
A
rrrrrrr ’"'|

7/3113 Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea 63




___Overlapping Communication

« Goal: make use of “all the wires all the time”
- Schedule communication to avoid network backup

» Trade-off: overhead vs. overlap
- Exchange has fewest messages, less message overhead
- Slabs and pencils have more overlap; pencils the most

« Example: Class D problem on 256 Processors

Exchange (all data at once) 512 Kbytes
Slabs (contiguous rows that go to 1 processor) 64 Kbytes
Pencils (single row) 16 Kbytes

7/31/13 64 Rl
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NAS FT Variants Performance Summary

1100 T T T T T T

1000l I Best NAS Fortran/MPI 7777777777 7777777777 7777777777 5 ij'ops

[ | Best MPI (always Slabs)

900 | [ |Best UPC (always Pencils) S R I R 1. /

BOO |- -+ v be v e e el e

700

600

500

MFlops per Thread

400

300

200

100

oA 56 o 56
NV \\,\‘-\(\‘\Baﬂd 2 glrand 2° cland 2

>

) 731113 65 [l
=* Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea
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FFT Performance on BlueGene/P

UPC implementation

consistently outperform HPC Challenge Peak as of July 09 is
MPI ~4.5 Tflops on 128k Cores

Uses highly optimized local ;5
FFT library on each node ——Slabs
3000

UPC version avoids send/ —#-Slabs (Collective)
receive synchronization 2500 —+—Packed Slabs (Collective)

=>=MPI| Packed Slabs
Lower overhead
Better overlap

Better bisection
bandwidth
1000

Numbers are getting close
to HPC record on BG/P 500

256 512 1024 2048 4096 8192 16384 32768

~S
A
rrrrrrr |"'|

Num. of Cores
3 7/31/13
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FFT Performance on Cray XT4

* 1024 Cores of the Cray XT4
-Uses FFTW for local FFTs

—Larger the problem size the more effective the overlap
400 ;

I MPI Packed Slabs

0 \mmm UPC PackedSlabs| B B

|l UPC Slabs 00

300

250 0o O @ | EEpy N

200/ =, PO

GFlops

150 ] m

100

50

0

D/8 D/4 D/2 D 2D 4D 8D
Problem Size (D=2048x1024x1024)




Event Driven LU in UPC

 DAG Scheduling before it's time
« Assignment of work is static; schedule is dynamic

» Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization
» General issue: dynamic scheduling in partitioned memory

— Can deadlock in memory allocation
- “memory constrained” lookahead

N ‘
| —
L] ) J ;N
E O N
OO
T
some edges omitted
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UPC HPL Performance

X1 Linpack Performance Opteron Cluster Altix Linpack
Li k
1400 Performance periormance '« MPI HPL numbers
m MPYHPL 160 - from HPCC
1200 a UPC
140 database

1000 200

120

-Large scaling:
«2.2 TFlops on 512p,

o | N *4.4 TFlops on 1024p
w0 murc | (Thunder)

20 -

800 100

150 -

GFlop/s

600 80

E—

GFlop/s
GFlop/s

100 +
400 -

L

50 -
200 -

_

0 - 0
60 X1/64 X1/128 Opt/64 Alt/32

« Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScalLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s
 n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

v Joint work with Parry HEESISEWY)
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MILC (QCD) Performance in UPC

800000
700000

600000 *UPC Opt

500000 =\P|

400000

UPC Naive

300000

Sites / Second

200000
100000

O A 4
512 1024 2048 4096 8192 16384 32768
Number of Cores

* MILC is Lattice Quantum Chromo-Dynamics application

. ° UPC scales better than MPI when carefully optimized
) 7/3113

70
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A Family of PGAS Languages

« UPC based on C philosophy / history
- http://upc-lang.org
- Free open source compiler: http://upc.lbl.gov
— Also a gcc variant: http://www.gccupc.org
 Java dialect: Titanium
- http://titanium.cs.berkeley.edu
» Co-Array Fortran
— Part of Stanford Fortran (subset of features)
- CAF 2.0 from Rice: http://caf.rice.edu
» Chapel from Cray (own base language better than Java)
— http://chapel.cray.com (open source)
« X10 from IBM also at Rice (Java, Scala,...)
- http://www.research.ibm.com/x10/
« Phalanx from Echelon projects at NVIDIA, LBNL,...
- C++ PGAS languages with CUDA-like features for GPU clusters

~=¢ Coming soon.... PGAS for Python, aka PyGAS —
; 7/31/13 71 Xl
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Application Work in PGAS

* Network simulator in UPC (Steve Hofmeyr, LBNL)
* Real-space multigrid (RMG) quantum mechanics 3 &
(Shirley Moore, UTK) "

« Landscape analysis, i.e., “Contributing Area
Estimation” in UPC (Brian Kazian, UCB)

« GTS Shifter in CAF (Preissl, Wichmann, L
Long, Shalf, Ethier, ‘;2 | | /
Koniges, LBNL, 30 ]

Cray, PPPL)

20 ‘ . // ~=-MPI-gts
15 - —=CAF-atom
L —a |
5 —_—

4096 8192 16384 32768 65536 131072
MPI Processes / CAF images

Time in Seconds

7/3113 72
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Summary

« UPC designed to be consistent with C
—Ability to use pointers and arrays interchangeably
 Designed for high performance
—-Memory consistency explicit; Small implementation
- Transparent runtime
* gcc version of UPC:
http://www.gccupc.org/
» Berkeley compiler
http://upc.lbl.gov
« Language specification and other documents
http://upc.gwu.edu
« Vendor compilers: Cray, IBM, HP, SGI,...
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Two Distinct Parallel Programming Questions

* What is the parallel control model?

SPMD “default” plus data parallelism through
collectives and dynamic tasking within nodes
or between nodes through libraries

data parallel dynamic single program

(singe_ thread of control) threads multiple data (SPMD)
* What is the model for sharing/communication?

) J/' ‘ receive

PGAS load/store with partitioning for locality,
but need a “signaling store” for producer
SY consumer parallelism

74

-3
A
rrrrrrr |'"|

BERKELEY LAB



PGAS Languages

» Global address space: thread may directly read/write remote data
* Hides the distinction between shared/distributed memory
 Partitioned: data is designated as local or global
* Does not hide this: critical for locality and scaling

o |
o ;
© i
Q. .
> 4\
(/)] i
(/)] |
D
u °
S I
©
3 g /
©)
PO p1 pn

« UPC, CAF, Titanium: Static parallelism (1 thread per proc)
e Does not virtualize processors
« X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

P AL ~
S A
4 5 7/31 /1 3 75 rjnhl |"'|
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Arrays in a Global Address Space .
T

aE
—
» Key features of Titanium arrays ==

-Generality: indices may start/end and any point

—Domain calculus allow for slicing, subarray,
transpose and other operations without data copies

« Use domain calculus to identify ghosts and iterate:
foreach (p in gridA.shrink(1l) .domain())

 Array copies automatically work on intersection
gridB.copy (gridA.shrink (1)) ;

___________ N intersection (copied
“restricted” (non- ; i area)
ghost) cells . 4/ Useful in grid
- | computations
e including AMR
ghost — gridA gridB g

cells .
Joint work with Titanium group 76 Kl
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Languages Support Helps Productivity

C++/Fortran/MPI AMR

* Chombo package from LBNL
* Bulk-synchronous comm:
- Pack boundary data between procs
- All optimizations done by programmer

Titanium AMR

. Entirely in Titanium
. Finer-grained communication
- No explicit pack/unpack code
- Automated in runtime system
. General approach
- Language allow programmer optimizations
- Compiler/runtime does some automatically

Speedup

80

70 -

///
60 ad
///
P
_

50

40

speedup

30

20

10

16 28 36 56 112

#procs

‘ —«—Ti —= Chombo ‘

Lines of Code

30000

25000

20000

15000

10000

5000

= AMRE liptic
® AMRTools
m Util

0 Grid

m AMR

m Array

Titanium

C++/F/MPI
(Chombo)

7/31/13

Work by Tong Wen and Philip Colella; Communication opti
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Particle/Mesh Method: Heart Simulation

 Elastic structures in an incompressible fluid.
- Blood flow, clotting, inner ear, embryo growth, ...

« Complicated parallelization

- Particle/Mesh method, but “Particles” connected
into materials (1D or 2D structures) — /
- Communication patterns irregular between particles -
(structures) and mesh (fluid)

2D Dirac Delta Function

Code Size in Lines
Fortran Titanium
8000 4000

Note: Fortran code is not parallel

¢ ) JaUBMbBk with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen 78 ’:‘\HI
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PyGAS: Combine two popular ideas

* Python
—-No. 6 Popular on htip://langpop.com and extensive
libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX

-10% of NERSC projects use Python

« PGAS
—-Convenient data and object sharing

* PyGAS : Objects can be shared via Proxies with operations
Intercepted and dispatched over the network:

num = 1+42%j print pxy.real # shared read
= share (num, from=0) pxy.imag = 3 # shared write

+ Leveraging duck typing: print pxy.conjugate () # invoke
* Proxies behave like original objects.
* Many libraries will automatically work.




Compiler-free “UPC++” eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put)
A[1] =1; // A[1] -> global_ref t ref(A, 1); ref = 1;

R-value reference (read/get)
intn=A[1] +1; // A[1] -> global ref tref(A, 1); n = (int)ref + 1;

128 - Cray XK6 Performance Speedup Giga-Updates Per Second on MIC
Cluster
32 ==DEGAS C++
Q. =i=UPC
3
¢ 3
Q.
/2]

05 -1 -2 4 8 16 32 64 128 256 00

Number of GPUs 1t 2 4 8 16 32 60
Num. of Processes
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Hierarchical SPMD (demonstrated in Titanium)

* Thread teams may execute distinct tasks

partition(T) {
{ model fluid(); }
{ model muscles(); }
{ model electrical(); }

}
 Hierarchy for machine / tasks
—Nearby: access shared data

-Far away: copy data

spanl
(core loca
» Advantages: spand
_ 3
—-Provable pointer types E\E%Ecgl')

(global)

-Mixed data / task style
—Lexical scope prevents some deadlocks

RS, A
i AR
N O R o Y o Y ¢« v | [
H nH
¢ 5
%
AN
186
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Hierarchical machines - Hierarchical programs

- Hierarchical memory

gf%%% . (What {0 expose va hide)

- Two approaches to
hierarchical control

« Option 1: Dynamic parallelism creation
- Recursively divide until... you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

« Option 2: Hierarchical SPMD with “Mix-ins”
- Hardware threads can be grouped into units hierarchically
— Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Qption 1 spreads threads, option 2 collecte them together

-3
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One-sided communication works everywhere

PGAS programming model

*pl = *p2 + 1;
A[i] = B[1];

upc_memput (A,B,64) ;

B DALLAS A

. . . ] Woso
It is implemented using one-sided b o
communication: put/get

Support for one-sided communication (DMA) appears in:

» Fast one-sided network communication (RDMA, Remote
DMA)

 Move data to/from accelerators
* Move data to/from I/O system (Flash, disks,..)

~~\Movement of data in/out of local-store (scratchpad) mem o

BERKELEY LAB



Vertical PGAS

* New type of wide pointer?
— Points to slow (offchip memory)
- The type system could get unwieldy quickly

e oo Frivateon-chip

I m:

Shared
off-chip
DRAM or
NVRAM

-3
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Bringing Users Along: UPC Experience

1991 Other GASNet-based languages
Active Msgs 1993 2001 2010.
are fast Split-C funding gcc-upc at Intrepid Hybrid MPI/UPC
(DOE)

1992

First AC 1997 2001 2006

(accelerators + First UPC First UPC UPC in NERSC

split memory) Meeting Funding procurement

1992 First Split-C 2003 Berkeley E

(compiler class) ;27:5?@2’ é(;(;ZCGASNet Compiler release
* Ecosystem:
- Users with a need (fine-grained random access)
— Machines with RDMA (not full hardware GAS)
— Common runtime; Commercial and free software
- Sustained funding and Center procurements

« Success models:
- Adoption by users: vectors - MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
85 Enable future models: Chapel, X10,...
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In General: Communication is expensive

Annual improvements

Communication is expensive...

... time and energy

Cost components:
 Bandwidth: # of words
 Latency: # messages

Strategies
« Overlap: hide latency

Flops

BW Latency

59%

Network 26% 15%

DRAM  23% 5%

10000

1000 -

100 -

PicoJoules
S

« Avoid: algorithms to reduce bandwidth use and
number of messages (latency)

Hard to change: Latency is physics; bandwidth is money!

A
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Towards Communication-Avoiding Compilers:
Decon 1cting D Matrix Multipl

/ s Tiling the iteration space
« Compute a subcube
« Will need data on faces
(projection of cube, subarrays)
 For s loops inthe nest = s
dimensional space

j* For x dimensional arrays,
A project to x dim space

| <—
Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation (*/+)

fori
for j
for k
C[i,j] ... Ali,k] ... B[k,j] ...

>
A
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Lower Bound Idea on C = A*B

romy, Toledo, Tiskin

«X 5

“Unit cubes” in black box with
side lengths x, y and z

= Volume of black box

— x*y*z

= (#Acs * #Bos * #Cos )12

= (xz*zy * yx)"?

P

K

“C shadow”

Q " 9\\050 /’
O

“A shadow”

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow?” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
# cubes in 3D set = Volume of 3D set
< (area(A shadow) * area(B shadow) *
area(C shadow)) 12 e
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Generalizing Communication Optimal
Transformations to Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce The same idea (replicate
and reduce) can be used
¢ .'...'... 000000 on (direct) N-Body code:
0000 1D decomposition >
. . . . “1.5D”

Speedup of 1.5D N-Body over 1D

Does this work in general?

* Yes, for certain loops
and array expressions

* Relies on basic result in
group theory

« Compiler work TBD

IPDPS’13 paper (Driscoll, Georganas, Koanantakool,
Solomonik, Yelick)

# of cores

3.7x

For generalization to other loop nests, see:
httg /www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf




Communication Overlap Complements Avoidance

60000 Performance results on Cray XE6
(24K cores, 32k x 32k matrices)
50000
®2.5D + Overlap
= 2.5D (Avoiding)
40000 2D + Overlap
»n ® 2D (Original)
Q
O 30000
[T
o
20000
10000
0

SUMMA Cannon TRSM Cholesky

» Even with communication-optimal algorithms (minimized bandwidth) there are still
benefits to overlap and other things that speed up networks

» Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et
al, SC12
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N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

’8\ 0.25 T T T T T T T T
@D mm Communication (Reduce)
o == Communication (Shift)

2 o2 - mm Computation -
()

=

= 0.15

o)

o

()

£ 0.1

|_

-

2 0.05

>

(&)

2

L 0

c=1 c=1 c=2 c=4 c=8 c¢c=16 ¢c=32 c=64
(tree) (no-tree)

Replication Factor
< >

11.8x speedup




Generalizing Communication Lower Bounds and
Optimal Algorithms

» For serial matmul, we know #words_moved = Q (n3/M"?),
attained by tile sizes M2 x M1/2

 Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices, #words moved = () (#iterations/Me), for some e
we can determine

 Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

* Long term goal: All compilers should generate
communication optimal code from nested loops

See: http.//www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-61.pdf




HPC: From Vector Supercomputers to

__Massively Parallel Systems  4-~500
500
Programmed by ' Single Proc.
S “annotating” M SMP
serial programs M Constellation
0 300 M Cluster
£ " MPP
»
$200
Programmed by
completely rethinking
algorithms and
100 :
software for parallelism
industrial use
0 N < O © M~ 0
e O O O O O
222222
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- BRI/ /1N e
o
o
N 4
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A Brief History of Languages

* When vector machines were king
- Parallel “languages” were loop annotations (IVDEP)
- Performance was fragile, but there was good user support

 When SIMD machines were king
- Data parallel languages popular and successful (CMF, *Lisp, C*, ...)
- Quite powerful: can handle irregular data (sparse mat-vec multiply)
- Irregular computation is less clear (multi-physics, adaptive meshes,
backtracking search, sparse matrix factorization)
* When shared memory multiprocessors (SMPs) were king
— Shared memory models, e.g., OpenMP, POSIX Threads, were popular

* When clusters took over

- Message Passing (MPI) became dominant
 With multicore building blocks for clusters

- Mixed MPI1 + OpenMP is the preferred choice
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