Partitioned Global Address

Space Programming
with
Unified Parallel C (UPC)
Kathy Yelick

Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

~
A
f\l A

BERKELEY LAB

NERSC Represents a Broad HPC
Workload including Data and Simulation

NERSC computing for science
- * 4500 users, 600 projects

SOOI R sl - ~65% from universities, 30% labs

FHISIES P - 1500 publications per year!

».h e
Journal of

gmre U *© 1.3PF Petaflop Cray system, Hopper

Struct - 8 PB filesystem; 250 PB archive

» Several systems for genomics,
astronomy, visualization, etc.

~650 applications

» 75% Fortran, 45% C/C++, 10% Python
» 85% MPI, 25% with OpenMP

* 10% PGAS or global objects

» 70% with checkpointing for resilience

These are self-reported, likely low

-3
A
rrrrrrr |"'|

2 BERKELEY LAB

Shared Memory vs. Message Passing

Shared Memory Message Passing

« Advantage: Convenience * Advantage: Scalability
—Can share data structures —Locality control
—-Just annotate loops —Communication is all
~Closer to serial code explicit in code (cost

- Disadvantages transparency)
-No locality control * Disadvantage
_Does not scale —Need to rethink data

structures

-Race conditions
-Tedious pack/unpack code

-When to say “receive’

EP0 CALIR
S "o9
> SRR
B S8
H A
(L) 7131113 3
As¢ t7H
SR S
O & &y
1868

Limitations of Existing Programming Models

« We can run 1 MPI process per core, but there are
problems with 6-12+ cores/socket:

- Insufficient memory: user level
data and internal buffers

B "Running Time"
=="Memory per Node"

- Runtime overheads: copying and fggg | 12 _
synchronization 1600 10 3§
 OpenMP, Pthreads, or other _ 1400 Py
M 8 3
shared memory models 9 1200 Z
- No control over locality, e.g., Non-g 1000 - 6 g
Uniform Memory Access = 800 4 2
- No explicit memory movement, 288 | g
e.g., accelerators or NVRAM 200 | 2 2
* Tuning is non-obvious 0 0
- Tradeoff between speed and 11213 6 12
memory footprint OpenMP threads / MPI tasks

Nick Wright, John Shalf et al, NERSC/Cray Center of Excellence TI}Iﬂ

BERKELEY LAB

Programming Challenges and Solutions

Message Passing Programming

Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

8/31/13

Global Address Space Programming

Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

>

— ,\
reeeoeee] !

BERKELEY LAB

Science Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random
Independent Neighbor Simulations access, large

Jobs for Simulations data Analysis
Analysis and
Simulations

NS Y
Data analysis and simulation

-3
A
rrrrrrr ""|

PGAS Languages

» Global address space: thread may directly read/write remote data
* Hides the distinction between shared/distributed memory

* Partitioned: data is designated as local or global
* Does not hide this: critical for locality and scaling

Global address space

Por Cnu ~ A
4 |
) 731113 7 el

. 18

BERKELEY LAB

UPC Outline

Background

UPC Execution Model

Basic Memory Model: Shared vs. Private Scalars
Synchronization

Collectives

Data and Pointers

Dynamic Memory Management

Performance

Beyond UPC

© 0N O Wb~

S5,
&= O
1 o
I A
L0 9 7/31113 8
t L H
o\ 7\) a .,‘7. 15, .'
On S Y
1868 y

History of UPC

* Initial Tech. Report from IDA in collaboration with LLNL
and UCB in May 1999 (led by IDA).
-Based on Split-C (UCB), AC (IDA) and PCP (LLNL)

« UPC consortium participants (past and present) are:

-ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS,
Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGl, Sun
Microsystems, UCB, U. Florida, US DOD

- UPC is a community effort, well beyond UCB/LBNL

 Design goals: high performance, expressive, consistent
with C goals, ..., portable

« UPC Today

- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc
from Intrepid, Berkeley UPC)

- “Pseudo standard” by moving into gcc trunk
—Most widely used on irregular / graph problems today

7 CALI
o mR = A
% i
W 73113 o K I
3B
4 9 '9/0 .
N 1868 o

BERKELEY LAB

7/3113

UPC Execution
Model

10

UPC Execution Model

* A number of threads working independently in a SPMD
fashion

- Number of threads specified at compile-time or run-time;
available as program variable THREADS

- MYTHREAD specifies thread index (0. . THREADS-1)

- upc barrier is a global synchronization: all wait

- There is a form of parallel loop that we will see later
 There are two compilation modes

- Static Threads mode:
« THREADS is specified at compile time by the user
* The program may use THREADS as a compile-time constant

— Dynamic threads mode:
» Compiled code may be run with varying numbers of threads

BERKELEY LAB

Hello World in UPC

* Any legal C program is also a legal UPC program

* [f you compile and run it as UPC with P threads, it will
run P copies of the program.

 Using this fact, plus the identifiers from the previous
slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {

printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

= = $
) 7/31/13 12 il

BERKELEY LAB

Example: Monte Carlo Pi Calculation

» Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

—Area of square =2 = 1

—Area of circle quadrant = %4 * xt r? = /4
* Randomly throw darts at x,y positions
« If X2 + y2 < 1, then point is inside circle
« Compute ratio:

—# points inside / # points total

- 1 = 4"ratio

r =1

(€) 73113 13

Pi in UPC

 Independent estimates of pi:

main (int argc, char **argv) ({
int i, hits, trials = 0;
double pi;

Each thread gets its own
copy of these variables

atoi (argv[1l]);

else trials

if (arge '= 2)trials = 1000000; |Each thread canuse

input arguments

Initialize random in

srand (MYTHREAD*17) ;

math library

pi = 4.0*hits/trials;

for (1=0; i1 < trials; i++) hits += hit();

printf ("PI estimated to 3%f.", pi);

B WLE

Each thread calls “hit” separately

= A
14 fﬁ A

BERKELEY LAB

Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

* Function to throw dart and calculate where it hits:
int hit () {
int const rand max = OxFFFFFF;
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;

}

;a* KR, A
’= i)
3 713113 15 Il

% lt;ca

BERKELEY LAB

7/3113

Shared vs. Private
Variables

16

Private vs. Shared Variables in UPC

« Normal C variables and objects are allocated in the private
memory space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;

» Shared variables may not have dynamic lifetime: may not

occur in a function definition, except as static. \Why?

Thread, Thread, Thread
(7))
)
o
T o ours: | Shared
© 0O
© @©
- Q : : :
g » mine: mine: eoeo mine:
9 Private
O

= = o
Y 73113 17 il

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Parallel computing of pi, but with a bug
shared int hits: shared variable to
record hits

main (int argc, char **argv) ({
int i, my trials = 0;

int trials = atoi(argv([l]); divide work up evenly
my trials = (trials + THREADS - 1)/THREADS;
srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++)

hits += hit();
upc _barrier;

accumulate hits

if (MYTHREAD == 0) {
printf ("PI estimated to %£.", 4.0*hits/trials);
}
} What is the problem with this program?

“00‘ ~ !
&) 731113 15 el

BERKELEY LAB

Shared Arrays Are Cyclic By Default

» Shared scalars always live in thread 0
« Shared arrays are spread over the threads
« Shared array elements are spread across the threads

shared int x[THREADS] [* 1 element per thread */
shared int y[3] [THREADS] /* 3 elements per thread */
shared int z[3] [3] [* 2 or 3 elements per thread */

* In the pictures below, assume THREADS =4
-Red elts have affinity to thread 0O

Think of linearized

C array, then map
X . in round-robin

¢ As a 2D array, y is
y . . . logically blocked
by columns
Z .‘—
. . Z is not

e AL
IR
B el
AZH
Id :
o
&)
-

= A
19 fﬁ A

BERKELEY LAB

Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum

all_hits is
shared int all hits [THREADS]; shared by all
main (int argc, char **argv) { processors,

... declarations an initialization code omitted just as hits was

for (i=0; 1 < my trials; i++)
all hits[MYTHREAD] += hit() ;

upc_barrier;

if (MYTHREAD == 0) {

for (i=0; i < THREADS; i++) hits += all hits[i];

printf ("PI estimated to %£.", 4.0*hits/trials);

update element
with local affinity

}
= A
.9} 7/131113 o0 ol

BERKELEY LAB

7/3113

UPC
Synchronization

21

UPC Global Synchronization

« UPC has two basic forms of barriers:

— Barrier: block until all other threads arrive
upc_barrier
- Split-phase barriers
upc notify; this thread is ready for barrier
do computation unrelated to barrier
upc wait; wait for others to be ready

Optional labels allow for debugging
#define MERGE BARRIER 12
if (MYTHREAD%2 == 0) ({

upc_barrier MERGE BARRIER;
} else {

upc_barrier MERGE BARRIER;

: }
) 73113 2 il

BERKELEY LAB

Synchronization - Locks

Locks in UPC are represented by an opaque type:

upc _lock t

Locks must be allocated before use:

upc_lock t *upc all lock alloc(void);
allocates 1 lock, pointer to all threads

upc _lock t *upc global lock alloc(void);
allocates 1 lock, pointer to one thread

To use a lock:
void upc_ lock (upc lock t *1)

void upc _unlock (upc_lock t *1)
use at start and end of critical region

Locks can be freed when not in use
void upc lock free(upc lock t *ptr);

N\ -

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Parallel computing of pi, without the bug

shared int hits;

main (int argc, char **argv) ({
int i, my hits, my trials = 0; create a lock
upc lock t *hit lock = upc all lock alloc();
int trials = atoi(argv]|l]);
my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit(); locally

upc_lock (hit lock) ;

hits += my hits; accumulate

upc_unlock (hit_lock) ; across threads

upc_barrier;

if (MYTHREAD == 0)

printf ("PI: %$f", 4.0*hits/trials);

SETY, } >
3 7/31/13 o4 ;:ﬁﬂ

BERKELEY LAB

Recap: Private vs. Shared Variables in UPC

* We saw several kinds of variables in the pi example
-Private scalars (my hits)
-Shared scalars (hits)
-Shared arrays (all hits)
-Shared locks (hit lock)

Thread, Thread, Thread,
where:
hits: n=Threads-1
- hit lock: |
o
S Q | all hits[0]: || all hits[1]: all hits[n]: || Shared
© ©
—_ O
g 7 my hits: my hits: (XX my hits:
[<) Private
O

- = A
)} 7/31113 o5 Kl

BERKELEY LAB

7/3113

UPC Collectives

26

UPC Collectives in General

* The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec 1.2.pdf

* It contains typical functions:
- Data movement: broadcast, scatter, gather, ...
- Computational: reduce, prefix, ...

* Interface has synchronization modes:

— Avoid over-synchronizing (barrier before/after is simplest
semantics, but may be unnecessary)

- Data being collected may be read/written by any thread
simultaneously

» Simple interface for collecting scalar values (int, double,...)
- Berkeley UPC value-based collectives
— Works with any compiler
— http://upc.lbl.gov/docs/user/README-collectivev.txt

2 cAu = $
) 731113 27 [l

BERKELEY LAB

Pi in UPC: Data Parallel Style

* The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

« Use a reduction for better scalability

#include <bupc collectivev.h> Berkeley collectives

[/ no shared variables
main (int argc, char **argv) ({

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op

bupc allv reduce(int, my hits, 0, UPC ADD) ;
[/ barrier implied by collective
if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);

. } =]

BERKELEY LAB

Berkeley UPC (Value-Based) Collectives

« A portable library of collectives on scalar values (not arrays)

X = bupc_allv_reduce(double, x, 0, UPC_ADD)
TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)

General arguments:

rootthread is the thread ID for the root (e.g., the source of a broadcast)

All 'value' arguments indicate an I-value (i.e., a variable or array element, not a
literal or an arbitrary expression)

All 'TYPE' arguments should the scalar type of collective operation
upc_op_tis one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR,
UPC_XOR, UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX

Computational Collectives: reductions and scan (parallel prefix)
Data movement collectives: broadcast, scatter, gather

Gather takes a 'value’ from each thread and places them (in order by source
thread) into the local array on the root thread.

Permute perform a permutation of 'value's across all threads. Each thread
passes a value and a unique thread identifier to receive.

E = o

BERKELEY LAB

Full UPC Collectives

- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays

- When can a collective argument begin executing?

* Arguments with affinity to thread i/ are ready when thread i calls the
function; results with affinity to thread / are ready when thread i returns.

« This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

shared

—tl)
—tl)

local
dst dst dst

SrcC SrcC

Gt
Gt

Slide source: Steve Seidel, MTU 3 [ZReRly

BERKELEY LAB

UPC Collective: Sync Flags

In full UPC Collectives, blocks of data may be collected

A extra argument of each collective function is the sync mode of type
upc_flag t.

Values of sync mode are formed by or-ing together a constant of the form
UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNCQC), then if Xis:
- NO the collective function may begin to read or write data when the first thread
has entered the collective function call,
- MY the collective function may begin to read or write only data which has
affinity to threads that have entered the collective function call, and
- ALL the collective function may begin to read or write data only after all threads
have entered the collective function call
and if Yis

— NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

— ALL the collective function call may return only after all reads and writes of data
are complete.

= A
7/31/13 31 Il

BERKELEY LAB

7/3113

Work Distribution
Using upc forall

32

Example: Vector Addition

- Questions about parallel vector additions:
- How to layout data (here it is cyclic)
- Which processor does what (here it is “owner computes”)

/* vadd.c */
#include <upc relaxed.h>
#define N 100*THREADS

cyclic layout

shared int v1[N], v2[N]- sum[N];

void main () {

int i; / owner computes
for (i=0; i<N; 1i++)

if (MYTHREAD == i%THREADS)
sum[i]=v1[i]+Vv2[i];

~S
A
3 3 rjnhl |“'|

g 713113 BERKELEY LAB

Work Sharing with upc_forall()

* The idiom in the previous slide is very common
- Loop over all; work on those owned by this proc
« UPC adds a special type of loop
upc forall (init; test; loop; affinity)
statement;
 Programmer indicates the iterations are independent
- Undefined if there are dependencies across threads

« Affinity expression indicates which iterations to run on each thread.
It may have one of two types:

- Integer: af£finity%$THREADS iS MYTHREAD
- Pointer: upc_threadof (affinity) is MYTHREAD
e Syntactic sugar for loop on previous slide
- Some compilers may do better than this, e.g.,
for (1i=MYTHREAD; i<N; i+=THREADS)
- Rather than having all threads iterate N times:
for (i=0; i<N; i++) if (MYTHREAD == i%THREAD

E = o
) 773113 B

BERKELEY LAB

Vector Addition with upc_forall

* The vadd example can be rewritten as follows
« Equivalent code could use “&sum[i]” for affinity

* The code would be correct but slow if the affinity
expression were i+1 rather than i.
#define N 100*THREADS

The cyclic data
shared int v1[N], v2[N], sum[N]; distribution may
perform poorly on

void main () { some machines

int i;
upc_forall (i=0; i<N; i++; 1)

sum[i]=v1[i]+Vv2[i];

St

) 73113 35 A

BERKELEY LAB

7/3113

Distributed Arrays
in UPC

36

Blocked Layouts in UPC

« If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

* Instead, want a blocked layout

» Vector addition example can be rewritten as follows using a blocked
layout

#define N 100*THREADS
shared int [[*]|Vv1[N], v2[N], sum[N]; kﬂookedlayout

void main() {
int i;
upc_ forall (i=0; i<N; i++;|&sum[i])

sum[i]=v1[i]+v2[i];

}
¢) 713113 37 Rl

BERKELEY LAB

Layouts in General

 All non-array objects have affinity with thread zero.
 Array layouts are controlled by layout specifiers:
-Empty (cyclic layout)
-[*] (blocked layout)
—[0] or [] (indefinite layout, all on 1 thread)
—[b] or [b1][b2]...[bn] = [b1*b2*...bnN] (fixed block size)
» The affinity of an array element is defined in terms of:
-block size, a compile-time constant
-and THREADS.
* Element i has affinity with thread
(1 / block size) % THREADS
* In 2D and higher, linearize the elements asina C

_~. representation, and then use above mapping
(L 5) 731113 38

2D Array Layouts in UPC

« Array a1 has a row layout and array a2 has a block row
layout.

shared [m] int al [n][m];
shared [k*m] int a2 [n][m];

* If (k + m) % THREADS = = 0 them a3 has a row layout
shared int a3 [n][m+k];

* To get more general HPF and ScaLAPACK style 2D
blocked layouts, one needs to add dimensions.

« Assume r*c = THREADS;

shared [b1][b2] int a5 [m][n][r][c][b1][b2];
* or equivalently

shared [b1*b2] int a5 [m][n][r][c][b1][b2];

P AL
& <5 R
Y AN
4 A
L 2B 7/31/13 39
¢ SH
A A
R S Saws

On S Y

1868 y

Pointers to Shared vs. Arrays

- In the C tradition, array can be access through pointers
 Here is the vector addition example using pointers

#define N 100*THREADS
shared int v1[N], v2[N], sum|[N];

void main () {

int i;] [] []
shared int *pl, *p2; Y& 7
p1”

pl=vl; p2=v2;
for (i=0; i<N; i++, pl++, p2++)
if (i %THREADS= = MYTHREAD)
sum[i]= *pl + *p2;

) 731113 40

-3
A
rrrrrrr |"'|

BERKELEY LAB

UPC Pointers

Where does the pointer point?

Local | Global (to shared)
Where Pri
rivate 1 2
does the P P
pointer
reside? Shared p3 p4
int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */
Shared to local memory (p3) is not recommended.

. > A
3 7/31/13 41 el

BERKELEY LAB

UPC Pointers

Thread, Thread, Thread,

g p3: p3: p3:

S .1
52 p4:| 7 p4: - > p4: Shared
o
st
(D_,a p1|: / p1:’/V e0eo p1:”v

g p2:/ p2: -~ p2: Private

int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */

Pointers to shared often require more storage and are more costly to
_dereference; they may refer to local or remote memory.

& A) =~ /\
g 3 i
0) 7/31113 49 ;?::q‘

‘)‘(y?

BERKELEY LAB

Common Uses for UPC Pointer Types

int *pl;
 These pointers are fast (just like C pointers)
* Use to access local data in part of code performing local work

« Often cast a pointer-to-shared to one of these to get faster
access to shared data that is local

shared int *p2;
 Use to refer to remote data

« Larger and slower due to test-for-local + possible
communication

int *shared p3;

 Not recommended

shared int *shared p4;

* Use to build shared linked structures, e.g., a linked list

~S
A
4 3 ;hl |“'|

BERKELEY LAB

UPC Pointers

« In UPC pointers to shared objects have three fields:
- thread number
— local address of block

- phase (specifies position in the block)

Virtual Address Thread Phase

 Example implementation

Phase Thread Virtual Address
63 49 48 38 37 0

> A

BERKELEY LAB

UPC Pointers

» Pointer arithmetic supports blocked and non-blocked
array distributions

« Casting of shared to private pointers is allowed but
not vice versa !

* When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

« Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast

ST,
,\«"F "09
45 a0
H:4 A
L 2B 7/31/13 45
t L H
RS A
O & &Y
1868

Special Functions

« size tupc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

* size tupc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

« shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

i LSS TN
14 AR
.) 7/31/13 46
2N
%% B
o ik
186!

Global Memory Allocation

shared void *upc _alloc(size t nbytes);
nbytes : size of memory in bytes

* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the shared
space with affinity to itself.

shared [] double [n] p2 = upc alloc(n&sizeof (double) ;

" Thread, Thread, Thread,_
8893
© 5 3|| ndoubles [i| ndoubles n doubles Shared
) g 7

f

p2: A p2: (XX p2: / Private

void upc free (shared void *ptr);

« Non-collective function; frees the dynamically allocated shared
memory pointed to by ptr

“00‘ ~ !
L) 8nns 7

BERKELEY LAB

Global Memory Allocation

shared void *upc global alloc(size_ t nblocks,
size t nbytes);

nblocks : number of blocks
nbytes : block size
* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the
shared space with the shape:

shared [nbytes] char[nblocks * nbytes]

shared void *upc all alloc(size t nblocks,
size t nbytes);

 The same result, but must be called by all threads together
« All the threads will get the same pointer

) 73113 48

-3
A
rrrrrrr |"'|

BERKELEY LAB

Distributed Arrays Directory Style

 Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS] ;
directory[i]=upc alloc(local size*sizeof (double));

1171|171 |directory

i N — //37
E """""""""""""""" T~
:___i) _____________________________ jf/ _[_/
physical and
* These are also more general: | conceptual
- Multidimensional, unevenly distributed 3D array

_ layout
~. * Ghost regions around blocks —
) 7/3113 20 Rl

|

BERKELEY LAB

Memory Consistency in UPC

» The consistency model defines the order in which one thread may
see another threads accesses to memory

- If you write a program with unsychronized accesses, what

happens?
- Does this work?
data = .. while ('flag) { }:
flag = 1; .. = data; // use the data

« UPC has two types of accesses:
— Strict: will always appear in order
- Relaxed: May appear out of order to other threads
» There are several ways of designating the type, commonly:

- Use the include file:
#include <upc relaxed.h>

- Which makes all accesses in the file relaxed by default
— Use strict on variables that are used as synchronization (£lag)

RN)
¢) 713113 50 Rl

BERKELEY LAB

Synchronization- Fence

* Upc provides a fence construct

—-Equivalent to a null strict reference, and has the
syntax
* upc_fence;
-UPC ensures that all shared references issued
before the upc _fence are complete

7/3113

Performance of
UPC

52

Berkeley UPC Compiler

-

Used by bupc and
gcc-upc
Platform-
independent
Network- _Compiler-
independent independent
P Language-
GASNet Communication System independent
Used by Cray

UPC, CAF, Network Hardware
Chapel, Titanium,
and others

PGAS Languagdes have Feriorm e

Strategy for acceptance of a new language
» Make it run faster than anything else

Keys to high performance
 Parallelism:

—-Scaling the number of processors
« Maximize single node performance

-Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

« Avoid (unnecessary) communication cost
-Latency, bandwidth, overhead

-Berkeley UPC and Titanium use GASNet
communication layer

» Avoid unnecessary delays due to dependencies

-Load balance; Pipeline algorithmic dependencies
(C) 731113 >4

One-Sided vs Two-Sided

one-sided put message
address data payload ——* host
Py CPU
network
two-sided message Jec UL
message id data payload — memory

* A one-sided put/get message can be handled directly by a network
interface with RDMA support

- Avoid interrupting the CPU or storing data from CPU (preposts)

» A two-sided messages needs to be matched with a receive to
identify memory address to put data

- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

TN —
0) 7131113 55 el

BERKELEY LAB

Bandwidths on Cray XE6 (Hopper)

18000

=¢=Berkeley UPC

16000
=@=Cray UPC

14000

=i=Cray MPI

12000

10000

8000

w
—
[01]
=
g
<
wid
=
3
S
c
©
[11]

6000

4000

2000

2048 8192
Msg. size

512

7/31/13

>

frreeerer

A
i

One-Sided vs. Two-Sided: Practice

900
800 —&— GASNet put (nonblock)"
—=— MPI Flood ‘/./C//r‘;.;.=.7
700 o /
. g 600 NERSC Jacquard
o = machine with
§, E 500 Relatlve BWGASNet/MPI) — Opteron
0 1§5 400 /.’ processors
o T ;2
3§ 300 / 20 Ine—"_ -
: o . AN
200 N
/.//l/ 19 | —
1 OO 10 1000 100000 10000000——
Size (bytes)
0 JElélﬁ.,/r | | |
10 100 1,000 10,000 100,000 1,000,000
Size (bytes)

* InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
» Half power point (N %2) differs by one order of magnitude
 This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea ~

A
7/31/13 57 ’\ 0

BERKELEY LAB

Ping Pong Latency on a Cray XE6 (Hopper)

—UPC MPI - Large Pages —MPI - Regular Pages
10000

1000

100

Time (us)

10

X © 0) N @‘Lb‘ b‘lxb&‘b%‘lxb&‘b@‘bb‘

A
7/31/13 58 ’\ 0

BERKELEY LAB

Bandwidths on Cray XE6 (Hopper)

—UPC —MPI Large MPI

M
-~
[01]
<
L
whd
2
3
©
c
©
m

O _
b‘%\@‘b‘]’@b‘%%@\%%b‘b‘%@q"/%b‘ %Q"\“/b?‘%'\@
v 9 \Q N

Message Size (Bytes)

A
7/31/13 59 ’\ 0

BERKELEY LAB

(down is good)

GASNet: Portability and High-Performance

8-byte Roundtrip Latency
24.2

25

B MPIping-pong

m GASNet put+sync

N
o

N
a

Roundtrip Latency (usec)

Elan3/Alpha Elan4/IA64 Myrinet/x86 B/G5 IB/Opteron SP/Fed

GASNet better for latency across machines

7/3113 60

Joint work with UPC Group; GASNet design by Dan Bonachea

-3
A
rrrrrrr |'"|

BERKELEY LAB

GASNet: Portability and High-Performance

Flood Bandwidth for 2MB messages

100%
o o5 228 1504 1490

795 799

90% -

80% -

70% -

(up is good)
Percent HW peak (BW in MB)

30% -

20% -

10% -

m MPI B GASNet

0% -

BElan3/Alpha Ean4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

GASNet at least as high (comparable) for large messages
7/31/13 o [l

5 Joint work with UPC Group; GASNet design by Dan Bonachea BERNETEVIEAD

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages
100%
90% - m MPI
B GASNet
80% -
x 70% -
©
)]
Q. 60% -
I 50% - 750
wid
c
8 40% -
— | 4
O ()
S o 30% -
(@]
2 20% -
Q.
=]
~ 10% -
0% NN W NN NN RN R
Han3/Alpha BEan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

GASNet excels at mid-range sizes: important for overlap
7/3113 o> [l

s’ Joint work with UPC Group; GASNet design by Dan Bonachea

BERKELEY LAB

Communication Strategies for 3D FFT

chunk = all rows with same destination

» Three approaches: X
e Chunk:

« Wait for 2" dim FFTs to finish
* Minimize # messages
 Slab:

» Wait for chunk of rows destined for 1
proc to finish

» Overlap with computation
* Pencil:
» Send each row as it completes
» Maximize overlap and
* Match natural layout

pencil =1 row

slab = all rows in a single plane with
same destination

-3
A
rrrrrrr ’"'|

7/3113 Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea 63

___Overlapping Communication

« Goal: make use of “all the wires all the time”
- Schedule communication to avoid network backup

» Trade-off: overhead vs. overlap
- Exchange has fewest messages, less message overhead
- Slabs and pencils have more overlap; pencils the most

« Example: Class D problem on 256 Processors

Exchange (all data at once) 512 Kbytes
Slabs (contiguous rows that go to 1 processor) 64 Kbytes
Pencils (single row) 16 Kbytes

7/31/13 64 Rl

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea BERKELEY LAB

NAS FT Variants Performance Summary

1100 T T T T T T

1000l I Best NAS Fortran/MPI 7777777777 7777777777 7777777777 5 ij'ops

[| Best MPI (always Slabs)

900 | [|Best UPC (always Pencils) S R I R 1. /

BOO |- -+ v be v e e el e

700

600

500

MFlops per Thread

400

300

200

100

oA 56 o 56
NV \\,\‘-\(\‘\Baﬂd 2 glrand 2° cland 2

>

) 731113 65 [l
=* Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

A
i

FFT Performance on BlueGene/P

UPC implementation

consistently outperform HPC Challenge Peak as of July 09 is
MPI ~4.5 Tflops on 128k Cores

Uses highly optimized local ;5
FFT library on each node ——Slabs
3000

UPC version avoids send/ —#-Slabs (Collective)
receive synchronization 2500 —+—Packed Slabs (Collective)

=>=MPI| Packed Slabs
Lower overhead
Better overlap

Better bisection
bandwidth
1000

Numbers are getting close
to HPC record on BG/P 500

256 512 1024 2048 4096 8192 16384 32768

~S
A
rrrrrrr |"'|

Num. of Cores
3 7/31/13

BERKELEY LAB

FFT Performance on Cray XT4

* 1024 Cores of the Cray XT4
-Uses FFTW for local FFTs

—Larger the problem size the more effective the overlap
400 ;

I MPI Packed Slabs

0 \mmm UPC PackedSlabs| B B

|l UPC Slabs 00

300

250 0o O @ | EEpy N

200/ =, PO

GFlops

150] m

100

50

0

D/8 D/4 D/2 D 2D 4D 8D
Problem Size (D=2048x1024x1024)

Event Driven LU in UPC

 DAG Scheduling before it's time
« Assignment of work is static; schedule is dynamic

» Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization
» General issue: dynamic scheduling in partitioned memory

— Can deadlock in memory allocation
- “memory constrained” lookahead

N ‘
| —
L]) J ;N
E O N
OO
T
some edges omitted

-3
| A
rrrrrrr |"'|

BERKELEY LAB

UPC HPL Performance

X1 Linpack Performance Opteron Cluster Altix Linpack
Li k
1400 Performance periormance '« MPI HPL numbers
m MPYHPL 160 - from HPCC
1200 a UPC
140 database

1000 200

120

-Large scaling:
«2.2 TFlops on 512p,

o | N *4.4 TFlops on 1024p
w0 murc | (Thunder)

20 -

800 100

150 -

GFlop/s

600 80

E—

GFlop/s
GFlop/s

100 +
400 -

L

50 -
200 -

_

0 - 0
60 X1/64 X1/128 Opt/64 Alt/32

« Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScalLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s
 n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

v Joint work with Parry HEESISEWY)

llllll

()

MILC (QCD) Performance in UPC

800000
700000

600000 *UPC Opt

500000 =\P|

400000

UPC Naive

300000

Sites / Second

200000
100000

O A 4
512 1024 2048 4096 8192 16384 32768
Number of Cores

* MILC is Lattice Quantum Chromo-Dynamics application

. ° UPC scales better than MPI when carefully optimized
) 7/3113

70

-3
A
rrrrrrr |"'|

BERKELEY LAB

A Family of PGAS Languages

« UPC based on C philosophy / history
- http://upc-lang.org
- Free open source compiler: http://upc.lbl.gov
— Also a gcc variant: http://www.gccupc.org
 Java dialect: Titanium
- http://titanium.cs.berkeley.edu
» Co-Array Fortran
— Part of Stanford Fortran (subset of features)
- CAF 2.0 from Rice: http://caf.rice.edu
» Chapel from Cray (own base language better than Java)
— http://chapel.cray.com (open source)
« X10 from IBM also at Rice (Java, Scala,...)
- http://www.research.ibm.com/x10/
« Phalanx from Echelon projects at NVIDIA, LBNL,...
- C++ PGAS languages with CUDA-like features for GPU clusters

~=¢ Coming soon.... PGAS for Python, aka PyGAS —
; 7/31/13 71 Xl

BERKELEY LAB

Application Work in PGAS

* Network simulator in UPC (Steve Hofmeyr, LBNL)
* Real-space multigrid (RMG) quantum mechanics 3 &
(Shirley Moore, UTK) "

« Landscape analysis, i.e., “Contributing Area
Estimation” in UPC (Brian Kazian, UCB)

« GTS Shifter in CAF (Preissl, Wichmann, L
Long, Shalf, Ethier, ‘;2 | | /
Koniges, LBNL, 30]

Cray, PPPL)

20 ‘ . // ~=-MPI-gts
15 - —=CAF-atom
L —a |
5 —_—

4096 8192 16384 32768 65536 131072
MPI Processes / CAF images

Time in Seconds

7/3113 72

BERKELEY LAB

Summary

« UPC designed to be consistent with C
—Ability to use pointers and arrays interchangeably
 Designed for high performance
—-Memory consistency explicit; Small implementation
- Transparent runtime
* gcc version of UPC:
http://www.gccupc.org/
» Berkeley compiler
http://upc.lbl.gov
« Language specification and other documents
http://upc.gwu.edu
« Vendor compilers: Cray, IBM, HP, SGI,...

e '."n
<5 AL o
7, SIS O
Ho A G
L0 9 7/31/13 73
Az *H
N A
S &Y.
1868

Two Distinct Parallel Programming Questions

* What is the parallel control model?

SPMD “default” plus data parallelism through
collectives and dynamic tasking within nodes
or between nodes through libraries

data parallel dynamic single program

(singe_ thread of control) threads multiple data (SPMD)
* What is the model for sharing/communication?

) J/' ‘ receive

PGAS load/store with partitioning for locality,
but need a “signaling store” for producer
SY consumer parallelism

74

-3
A
rrrrrrr |'"|

BERKELEY LAB

PGAS Languages

» Global address space: thread may directly read/write remote data
* Hides the distinction between shared/distributed memory
 Partitioned: data is designated as local or global
* Does not hide this: critical for locality and scaling

o |
o ;
© i
Q. .
> 4\
(/)] i
(/)] |
D
u °
S I
©
3 g /
©)
PO p1 pn

« UPC, CAF, Titanium: Static parallelism (1 thread per proc)
e Does not virtualize processors
« X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

P AL ~
S A
4 5 7/31 /1 3 75 rjnhl |"'|
N 1868 o ::

BERKELEY LAB

Arrays in a Global Address Space .
T

aE
—
» Key features of Titanium arrays ==

-Generality: indices may start/end and any point

—Domain calculus allow for slicing, subarray,
transpose and other operations without data copies

« Use domain calculus to identify ghosts and iterate:
foreach (p in gridA.shrink(1l) .domain())

 Array copies automatically work on intersection
gridB.copy (gridA.shrink (1)) ;

___________ N intersection (copied
“restricted” (non- ; i area)
ghost) cells . 4/ Useful in grid
- | computations
e including AMR
ghost — gridA gridB g

cells .
Joint work with Titanium group 76 Kl

BERKELEY LAB

Languages Support Helps Productivity

C++/Fortran/MPI AMR

* Chombo package from LBNL
* Bulk-synchronous comm:
- Pack boundary data between procs
- All optimizations done by programmer

Titanium AMR

. Entirely in Titanium
. Finer-grained communication
- No explicit pack/unpack code
- Automated in runtime system
. General approach
- Language allow programmer optimizations
- Compiler/runtime does some automatically

Speedup

80

70 -

///
60 ad
///
P
_

50

40

speedup

30

20

10

16 28 36 56 112

#procs

‘ —«—Ti —= Chombo ‘

Lines of Code

30000

25000

20000

15000

10000

5000

= AMRE liptic
® AMRTools
m Util

0 Grid

m AMR

m Array

Titanium

C++/F/MPI
(Chombo)

7/31/13

Work by Tong Wen and Philip Colella; Communication opti

77

>

A
reeeeee] M)

HFRKFIEY LAP

Particle/Mesh Method: Heart Simulation

 Elastic structures in an incompressible fluid.
- Blood flow, clotting, inner ear, embryo growth, ...

« Complicated parallelization

- Particle/Mesh method, but “Particles” connected
into materials (1D or 2D structures) — /
- Communication patterns irregular between particles -
(structures) and mesh (fluid)

2D Dirac Delta Function

Code Size in Lines
Fortran Titanium
8000 4000

Note: Fortran code is not parallel

¢) JaUBMbBk with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen 78 ’:‘\HI

BERKELEY LAB

AEIMJTH | ANGLE
INCLIMATION AMGLE

I TWIST | ANGLE
FIELD OF VIEW ANCLE
EYE DISTENCE (M)
|MEFR DISTAACE M1

FiR msymtt (M)

| CLIP MIDPLANE © (M)
CLIP THICKMNESS (MUY -
'DEPTH CLETHNG

CRUDK = 2048

ol 1

"
© § 0..:
\

sl iz s0

J
33
-~
~
~
-

Ir

- a1r)
o] ¢ 192, 00

=f |- 28240 E N
- " 392,00 N %
=} .| 140,80
=1 1. 1..00 :

o
— S
g
f LAV

-

s

wl
>

P W

5
X
T
)
] -
by v -~ X .':' "‘.zq, p “\
¥ v, 3 A
3 BN IS e P
)| [:’ :...' o :J
L8 Yol
3 " "-J o f v "
AR R e S
%\ Ve YIRS Y
WR i
BT} i
Y s -
o 15
| y ’ \ !

£

SHOW
SET

1 | 73

PERSPLCTIVE PROJECTION

PyGAS: Combine two popular ideas

* Python
—-No. 6 Popular on htip://langpop.com and extensive
libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX

-10% of NERSC projects use Python

« PGAS
—-Convenient data and object sharing

* PyGAS : Objects can be shared via Proxies with operations
Intercepted and dispatched over the network:

num = 1+42%j print pxy.real # shared read
= share (num, from=0) pxy.imag = 3 # shared write

+ Leveraging duck typing: print pxy.conjugate () # invoke
* Proxies behave like original objects.
* Many libraries will automatically work.

Compiler-free “UPC++” eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put)
A[1] =1; // A[1] -> global_ref t ref(A, 1); ref = 1;

R-value reference (read/get)
intn=A[1] +1; // A[1] -> global ref tref(A, 1); n = (int)ref + 1;

128 - Cray XK6 Performance Speedup Giga-Updates Per Second on MIC
Cluster
32 ==DEGAS C++
Q. =i=UPC
3
¢ 3
Q.
/2]

05 -1 -2 4 8 16 32 64 128 256 00

Number of GPUs 1t 2 4 8 16 32 60
Num. of Processes

-3
A
rrrrrrr ""|

BERKELEY LAB

Hierarchical SPMD (demonstrated in Titanium)

* Thread teams may execute distinct tasks

partition(T) {
{ model fluid(); }
{ model muscles(); }
{ model electrical(); }

}
 Hierarchy for machine / tasks
—Nearby: access shared data

-Far away: copy data

spanl
(core loca
» Advantages: spand
_ 3
—-Provable pointer types E\E%Ecgl')

(global)

-Mixed data / task style
—Lexical scope prevents some deadlocks

RS, A
i AR
N O R o Y o Y ¢« v | [
H nH
¢ 5
%
AN
186

BERKELEY LAB

Hierarchical machines - Hierarchical programs

- Hierarchical memory

gf%%% . (What {0 expose va hide)

- Two approaches to
hierarchical control

« Option 1: Dynamic parallelism creation
- Recursively divide until... you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

« Option 2: Hierarchical SPMD with “Mix-ins”
- Hardware threads can be grouped into units hierarchically
— Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Qption 1 spreads threads, option 2 collecte them together

-3
A
rrrrrrr |"'|

BERKELEY LAB

One-sided communication works everywhere

PGAS programming model

*pl = *p2 + 1;
A[i] = B[1];

upc_memput (A,B,64) ;

B DALLAS A

. . .] Woso
It is implemented using one-sided b o
communication: put/get

Support for one-sided communication (DMA) appears in:

» Fast one-sided network communication (RDMA, Remote
DMA)

 Move data to/from accelerators
* Move data to/from I/O system (Flash, disks,..)

~~\Movement of data in/out of local-store (scratchpad) mem o

BERKELEY LAB

Vertical PGAS

* New type of wide pointer?
— Points to slow (offchip memory)
- The type system could get unwieldy quickly

e oo Frivateon-chip

I m:

Shared
off-chip
DRAM or
NVRAM

-3
A
rrrrrrr ’"'|

Bringing Users Along: UPC Experience

1991 Other GASNet-based languages
Active Msgs 1993 2001 2010.
are fast Split-C funding gcc-upc at Intrepid Hybrid MPI/UPC
(DOE)

1992

First AC 1997 2001 2006

(accelerators + First UPC First UPC UPC in NERSC

split memory) Meeting Funding procurement

1992 First Split-C 2003 Berkeley E

(compiler class) ;27:5?@2’ é(;(;ZCGASNet Compiler release
* Ecosystem:
- Users with a need (fine-grained random access)
— Machines with RDMA (not full hardware GAS)
— Common runtime; Commercial and free software
- Sustained funding and Center procurements

« Success models:
- Adoption by users: vectors - MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
85 Enable future models: Chapel, X10,...

~S
A
rreceee |'"|

BERKELEY LAB

In General: Communication is expensive

Annual improvements

Communication is expensive...

... time and energy

Cost components:
 Bandwidth: # of words
 Latency: # messages

Strategies
« Overlap: hide latency

Flops

BW Latency

59%

Network 26% 15%

DRAM 23% 5%

10000

1000 -

100 -

PicoJoules
S

« Avoid: algorithms to reduce bandwidth use and
number of messages (latency)

Hard to change: Latency is physics; bandwidth is money!

A
rrrrrrr |'"|

87 BERKELEY LAB

Towards Communication-Avoiding Compilers:
Decon 1cting D Matrix Multipl

/ s Tiling the iteration space
« Compute a subcube
« Will need data on faces
(projection of cube, subarrays)
 For s loops inthe nest = s
dimensional space

j* For x dimensional arrays,
A project to x dim space

| <—
Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation (*/+)

fori
for j
for k
C[i,j] ... Ali,k] ... B[k,j] ...

>
A
rrrrrrr |"'|

BERKELEY LAB

Lower Bound Idea on C = A*B

romy, Toledo, Tiskin

«X 5

“Unit cubes” in black box with
side lengths x, y and z

= Volume of black box

— x*y*z

= (#Acs * #Bos * #Cos)12

= (xz*zy * yx)"?

P

K

“C shadow”

Q " 9\\050 /’
O

“A shadow”

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow?” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
cubes in 3D set = Volume of 3D set
< (area(A shadow) * area(B shadow) *
area(C shadow)) 12 e

BERKELEY LAB

Generalizing Communication Optimal
Transformations to Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce The same idea (replicate
and reduce) can be used
¢ .'...'... 000000 on (direct) N-Body code:
0000 1D decomposition >
. . . . “1.5D”

Speedup of 1.5D N-Body over 1D

Does this work in general?

* Yes, for certain loops
and array expressions

* Relies on basic result in
group theory

« Compiler work TBD

IPDPS’13 paper (Driscoll, Georganas, Koanantakool,
Solomonik, Yelick)

of cores

3.7x

For generalization to other loop nests, see:
httg /www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

Communication Overlap Complements Avoidance

60000 Performance results on Cray XE6
(24K cores, 32k x 32k matrices)
50000
®2.5D + Overlap
= 2.5D (Avoiding)
40000 2D + Overlap
»n ® 2D (Original)
Q
O 30000
[T
o
20000
10000
0

SUMMA Cannon TRSM Cholesky

» Even with communication-optimal algorithms (minimized bandwidth) there are still
benefits to overlap and other things that speed up networks

» Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et
al, SC12

BERKELEY LAB

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

’8\ 0.25 T T T T T T T T
@D mm Communication (Reduce)
o == Communication (Shift)

2 o2 - mm Computation -
()

=

= 0.15

o)

o

()

£ 0.1

|_

-

2 0.05

>

(&)

2

L 0

c=1 c=1 c=2 c=4 c=8 c¢c=16 ¢c=32 c=64
(tree) (no-tree)

Replication Factor
< >

11.8x speedup

Generalizing Communication Lower Bounds and
Optimal Algorithms

» For serial matmul, we know #words_moved = Q (n3/M"?),
attained by tile sizes M2 x M1/2

 Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices, #words moved = () (#iterations/Me), for some e
we can determine

 Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

* Long term goal: All compilers should generate
communication optimal code from nested loops

See: http.//www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-61.pdf

HPC: From Vector Supercomputers to

__Massively Parallel Systems 4-~500
500
Programmed by ' Single Proc.
S “annotating” M SMP
serial programs M Constellation
0 300 M Cluster
£ " MPP
»
$200
Programmed by
completely rethinking
algorithms and
100 :
software for parallelism
industrial use
0 N < O © M~ 0
e O O O O O
222222

Jo R A
S8
- BRI/ /1N e
o
o
N 4

BERKELEY LAB

A Brief History of Languages

* When vector machines were king
- Parallel “languages” were loop annotations (IVDEP)
- Performance was fragile, but there was good user support

 When SIMD machines were king
- Data parallel languages popular and successful (CMF, *Lisp, C*, ...)
- Quite powerful: can handle irregular data (sparse mat-vec multiply)
- Irregular computation is less clear (multi-physics, adaptive meshes,
backtracking search, sparse matrix factorization)
* When shared memory multiprocessors (SMPs) were king
— Shared memory models, e.g., OpenMP, POSIX Threads, were popular

* When clusters took over

- Message Passing (MPI) became dominant
 With multicore building blocks for clusters

- Mixed MPI1 + OpenMP is the preferred choice

~S
A
9 5 rjnml |"'|

BERKELEY LAB

