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Abstract. Large-scale parallel machines are programmed mainly with the single
program, multiple data (SPMD) model of parallelism. While this model has ad-
vantages of scalability and simplicity, it does not fit well with divide-and-conquer
parallelism or hierarchical machines that mix shared and distributed memory. In
this paper, we define the recursive single program, multiple data model (RSPMD)
that extends SPMD with a hierarchical team mechanism to support hierarchical
algorithms and machines. We implement this model in the Titanium language
and describe how to eliminate a class of deadlocks by ensuring alignment of col-
lective operations. We present application case studies evaluating the RSPMD
model, showing that it enables divide-and-conquer algorithms such as sorting to
be elegantly expressed and that team collective operations increase performance
of conjugate gradient by up to a factor of two. The model also facilitates optimiza-
tions for hierarchical machines, improving scalability of particle in cell by 8x and
performance of sorting and a stencil code by up to 40% and 14%, respectively.

1 Introduction

The single program, multiple data (SPMD) model of parallelism, in which a program
is launched with a fixed number of threads that execute throughout the program, is
the dominant programming model for large-scale distributed-memory machines. The
model encourages “parallel thinking” throughout the program execution, exposing the
actual degree of available parallelism, naturally leads to good locality, and can be imple-
mented by simple, low-overhead runtime systems. Both message-passing models like
MPI [19] and a number of partitioned global address space (PGAS) languages like UPC
[6], Titanium [23], and Co-Array Fortran [20] use the SPMD model by default. Previ-
ous work on Titanium also shows that the simplicity of the SPMD model can be used
to avoid certain classes of deadlocks, statically detect data races, and perform a set of
optimizations specific to the parallel setting [15,16].

While SPMD has proven to be a valuable programming model, the restrictiveness of
the flat SPMD model does have drawbacks. Algorithms that divide tasks among threads
or that recursively subdivide do not fit well into a model with a fixed number of threads
executing the same code. SPMD programming languages also tend to have a relatively
flat machine model, with no distinction between threads that are located nearby on a
large-scale machine and threads that are further apart. This lack of awareness of the
underlying machine hierarchy makes it difficult to reason about the communication
costs between threads. While some SPMD languages do address these issues with teams



or virtual topologies, they do not do so in a structured manner that provides flexibility
and performance but prevents deadlocks.

In this paper, we address the shortcomings above by defining the recursive single
program, multiple data (RSPMD) model. This model extends SPMD with user-defined
hierarchical teams, which are subsets of threads that cooperatively execute pieces of
code. We introduce new language and library features for hierarchical teams and de-
scribe how to ensure textual alignment of collectives, eliminating many forms of dead-
lock involving teams. Our implementation is in the context of the Titanium program-
ming language, and we evaluate the language additions on four applications. We demon-
strate that hierarchical teams enable the expression of divide-and-conquer algorithms
with a fixed number of threads, that team collectives provide better performance than
hand-written communication code, and that hierarchical teams allow optimizations for
the communication characteristics of modern, hierarchical parallel machines.

2 Background

The single program, multiple data (SPMD) model of parallelism consists of a set of
parallel threads that run the same program. Unlike in dynamic task parallelism, the set of
threads is fixed throughout the entire program execution. The threads can be executing
at different points of the program, though collective operations such as barriers can
synchronize the threads at a particular point in the program.

As an example of SPMD code, consider the following written in the Titanium lan-
guage1:
public static void main (String [ ] args ) {
System .out .println ("Hello from thread " + Ti .thisProc ( ) ) ;
Ti .barrier ( ) ;
if (Ti .thisProc ( ) == 0)
System .out .println ("Done." ) ;

}
A fixed number of threads, specified by the user on program start, all enter main. They
first print out a message with their thread IDs, or ranks, which can appear to the user
in any order since the print statement is not synchronized. Then the threads execute a
barrier, which prevents them from proceeding until all threads have reached it. Finally,
thread 0 prints out another message that appears to the user after all previous messages
due to the barrier synchronization.

Prior work has shown the benefit of assuming textual alignment of collectives [15].
Collectives are textually aligned if all threads execute the same textual sequence of col-
lective operations, and all threads agree on control-flow decisions that affect execution
of collectives. Discussions with parallel application experts indicate that most applica-
tions do not contain unaligned collectives, and most of those that do can be modified
to do without them. Our own survey of eight NAS Parallel Benchmarks [2] using MPI
demonstrated that all of them only use textually aligned collectives. Prior work has also
demonstrated how to enforce textual collective alignment using dynamic checks [17].

1 Throughout this paper, we highlight team operations in a bold, green color and collective
operations in bold purple.



The work in this paper is in the context of the Titanium language, an explicitly
parallel dialect of Java. Titanium uses the SPMD execution model and the partitioned
global address space (PGAS) memory model; the latter allows a thread to directly ac-
cess memory on any other thread, even if they do not physically share memory. Tita-
nium’s memory model is actually hierarchical, exposing three levels of memory hierar-
chy in the type system and compiler by distinguishing between thread-local, node-local,
and global data.

2.1 The RSPMD Model

While Titanium does have a memory hierarchy, like most other SPMD languages, it
does not have a concept of execution hierarchy. Some languages such as UPC are mov-
ing towards an execution model based on teams, in which the set of program threads
can be divided into smaller subsets (teams) that cooperatively run pieces of code. MPI
has communicators that allow teams of threads to perform collective operations. Sim-
ilarly, the GASNet [5] runtime layer used in Titanium now has experimental support
for teams and team collectives. Teams in MPI, UPC, and GASNet are non-hierarchical
groupings of threads and do not place restrictions on the underlying thread structure of a
team. A thread can be a part of multiple teams concurrently, making it easy to deadlock
a program through improper use of teams. Even correct use of multiple teams can be
difficult for programmers to understand and compilers to analyze, as they must reason
about the order of team operations on each thread. Finally, teams in MPI, GASNet, and
UPC do not have a hierarchical structure, so they cannot easily reflect the hierarchical
organization of algorithms and machines.

Instead of the flat teams of MPI, GASNet, and UPC, we introduce the recursive
single program, multiple data (RSPMD) programming model that uses hierarchies of
teams. In this model, threads start out as part of a single, global team. This team can
then be divided into multiple subteams, each of which can be recursively subdivided.
Multiple, distinct hierarchies can be used in different parts of a program. Hierarchies
can be created to match the underlying machine hierarchy, as in the Titanium memory
model, or to match an algorithmic hierarchy, as in divide-and-conquer algorithms. At
each point in the program, a thread is active in only a single team, and any collective
operation that it invokes operates over that team. In §3, we take care to define RSPMD
language extensions that enforce this restriction and prevent misuse of teams that would
result in deadlock.

2.2 Related Work

While many current languages besides the SPMD languages mentioned above are
locality-aware, only a handful of them incorporate hierarchical programming constructs
beyond two levels of hierarchy.

In the Fortress language [1], memory is divided into an arbitrary hierarchy of re-
gions. Data structures can be spread across multiple regions, and tasks can be placed in
particular regions by the programmer. Hierarchically tiled arrays (HTAs) [3] allow data
structures to be hierarchically decomposed to match a target machine’s layout, which
are then operated over in a data parallel manner. Other languages such as Chapel [7]



and the hierarchical place trees (HPT) [21] extension of X10 also have the concept of
hierarchical locales. While these languages may be built on SPMD runtimes, they do
not present the SPMD model of execution to the programmer.

Nested data parallelism allows hierarchical algorithms to be expressed in the con-
text of data parallelism. The model has been implemented in NESL [4] and in Haskell
[13]. However, irregular algorithms can be difficult to express in the data parallel model,
and nested data parallel implementations have focused on vector and shared-memory
machines rather than hierarchical machines. They also require more complicated com-
pilers than SPMD languages.

The Sequoia project [9] incorporates machine hierarchy in its language model. A
Sequoia program consists of a hierarchy of tasks that get mapped to the computational
units in a hierarchical machine. The team parallel model defined by Hardwick [11] is a
data-parallel analogue of Sequoia, where threads are arranged into a hierarchy of teams,
each of which is operated over in a data-parallel manner. Unlike RSPMD, this model
does not allow the expression of explicit parallelism. In both Sequoia and Hardwick’s
model, communication is restricted to between parent and child tasks or teams, making
the models unsuitable for many applications written in SPMD and PGAS languages.

The hierarchical single program, multiple data (HSPMD) model is in some sense the
inverse of the RSPMD model. In RSPMD, an initial, fixed set of threads is recursively
subdivided into smaller teams of cooperating threads. In HSPMD, on the other hand,
there is only a single thread initially, and each thread can spawn a new set of cooperating
threads. The Phalanx programming model uses a version of HSPMD [10].

3 RSPMD Language Extensions

In this section, we define language extensions for Titanium to implement the RSPMD
model. In designing the new additions to the Titanium language, we had a few goals in
mind for the extensions to satisfy: safety, flexibility, composability, and performance.

1. Safety. Team implementations in other SPMD languages and frameworks do not
generally impose any restrictions on their use. This can lead to circular dependen-
cies in team operations, resulting in deadlock. For example, a set of threads may
attempt to perform a collective operation on one team, while other threads attempt
to perform a collective operation on a different team; if the two teams overlap, then
this situation results in deadlock. The Titanium team extensions should prevent
such dependencies, as well as ensure that team collectives are textually aligned on
all threads in the relevant team, as is done for existing global collectives.

2. Flexibility. Many applications make use of different thread groupings at different
points in the program, such as a matrix-vector multiplication that requires both row
and column teams. The team mechanism should be flexible enough to support such
cases while still providing safety guarantees.

3. Composability. Existing code running in the context of a particular team should
behave as if the entire world consisted of just the threads in that team, with thread
ranks as specified by the team. This is to facilitate composition of different tasks, so
that a subset of threads can be assigned to each of them. At the same time, the team



mechanism should make it possible to interact with threads outside of an assigned
team if necessary.

4. Performance. Team operations should not adversely affect application perfor-
mance. This requires that team usage operations, which may be invoked many times
throughout an application run, be as lightweight as possible, even at the expense of
team creation operations that are called much less frequently.

3.1 Team Representation
To represent a team hierarchy, we introduce a new Team object, which represents a
group of threads and contains references to parent and child teams, resulting in a hi-
erarchy of teams. Like MPI or GASNet groups, Team objects specify team structures
separately from their usage; this is useful when a program uses multiple different team
structures or repeatedly uses the same structure, as in §4.2, and also allows team data
structures to be manipulated as first-class objects.

Knowledge of the physical layout of threads in a program allows a programmer to
minimize communication costs, so a new function Ti.defaultTeam() returns a special
team that corresponds to the mapping of threads to the machine hierarchy, grouping
together threads that share memory. The invocation Ti.currentTeam() returns the cur-
rent team in which the calling thread is participating.

Figure 1(a) shows the team hierarchy created by the following code, when there are
a total of twelve threads:
Team t = new Team ( ) ;
t .splitTeam ( 3 ) ;
int [ ] [ ] ids = new int [ ] [ ] {{0 , 2 , 1} , {3}} ;
for (int i = 0 ; i < t .numChildren ( ) ; i++)

t .child (i ) . splitTeamRelative (ids ) ;

Each box in the diagram corresponds to a node in the team tree, and the entries in each
box refer to member threads by their global ranks.

The code above first creates a team consisting of all the threads and then calls
the splitTeam method to divide it into three equally-sized subteams of four threads
each. It then divides each of those subteams into two uneven, smaller teams. The
splitTeamRelative call divides a team into subteams using IDs relative to the parent
team. In this case, each child u of team t is split into two smaller teams, with threads
0, 2, and 1 of u assigned to the first subteam and thread 3 of u assigned to the second.
This behavior allows the same code to be used to divide each of the three children of t,
which would not be the case if splitTeamRelative used global IDs.

The Team class provides a few other ways of generating subteams, though we omit
them for brevity. In addition, it includes numerous methods to query team properties;
for example, the class provides a myChildTeam method for determining which child
team contains the calling thread. Similarly, the teamRank method returns the rank of a
team in its parent, which can be used to write code that is conditional on a team’s rank.

3.2 New Language Constructs
In designing new language constructs that make use of teams, we identified two com-
mon usage patterns for grouping threads: sets of threads that perform different tasks and
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Fig. 1. Examples of (a) a team hierarchy and (b) blocked matrix-vector multiplication.

sets of threads that perform the same operation on different pieces of data. We introduce
a new construct for each of these two patterns.

Task Decomposition. In task parallel programming, it is common for different com-
ponents of an algorithm to be assigned to different threads. For example, a climate sim-
ulation may assign a subset of all the threads to model the atmosphere, another subset
to model the oceans, and so on. Each of these components can in turn be decomposed
into separate parts, such as one piece that performs a Fourier transform and another that
executes a stencil. Such a decomposition does not directly depend on the structure of
the underlying machine, though threads can be assigned based on machine hierarchy.

Task decomposition can be expressed through the following partition statement that
divides the current team of threads into subteams:

partition(T) { B0 B1 ... Bn−1 }

A Team object (corresponding to the current team at the top level) is required as an
argument. The first child team executes block B0, the second block B1, and so on. It
is an error if there are fewer child teams than partition branches, or if the given team
arguments on each thread in the current team do not have the same description of child
teams. If the provided team has more than n subteams, the remaining subteams do
not participate in the partition construct. Once a thread exits a partition, it rejoins its
previous team.

As a concrete example, consider a climate application that uses the team structure in
Figure 1(a) to separately model the ocean, the land, and the atmosphere. The following
code would be used to divide the program:
partition (t ) {
{ model_ocean ( ) ; }
{ model_land ( ) ; }
{ model_atmosphere ( ) ; }

}

Threads 0 to 3 would then execute model_ocean(), threads 4 to 7 would run
model_land(), and threads 8 through 11 would model the atmosphere.

Since partition is a syntactic construct, task structure can be inferred directly from
program structure. This simplifies program analysis and improves understandability of
the code.

Data Decomposition. In addition to a hierarchy of distinct tasks, a programmer may
wish to divide threads into teams according to algorithmic or locality considerations,
but where each team executes the same code on different sets of data. Such a data



decomposition can be either machine dependent or required by an algorithm, and both
the height and width of the hierarchy may differ according to the machine or algorithm.

Consider a parallel matrix-vector multiplication as in Figure 1(b), where the matrix
is divided in both dimensions among 8 threads, with four thread columns and two rows.
To compute the output vector, threads 0 to 3 must cooperate in a reduction to compute
the first half of the vector, while threads 4 to 7 must cooperate to compute the second
half. Both sets of threads perform the same operation but on different pieces of data.

A new teamsplit statement with the following syntax allows such a data-driven de-
composition to be created:

teamsplit(T) B

The parameter T must be a Team object (corresponding to the current team at the top
level), and as with partition, all threads must agree on the set of subteams. The construct
causes each thread to execute block B with its current team set to the thread’s subteam
specified in T , so that thread ranks and collective operations in B are with respect to
that subteam. As mentioned above, each subteam also has a rank, which can be used to
determine the set of data that the subteam is to operate on.

As an example, the following code executes reductions across the rows of a matrix:
teamsplit (t ) {
Reduce .add (data [t .myChildTeam ( ) . rank ( ) ] , myData ) ;

}
The reduction executes over the current team inside the teamsplit on each thread, which
is its associated child team of t. As a result, data from threads 0 to 3 are reduced to
produce a result for team 0, and data from threads 4 to 7 are combined into a result for
team 1.

It may be apparent that the partition statement can be implemented in terms of
teamsplit, with teams executing code based on their ranks. While this is true, we decided
that separate constructs for task and data decomposition would result in cleaner and
more readable code than a single construct combined with branching.
Common Features. Both the partition and teamsplit constructs are dynamically
scoped, changing the team in which a thread is executing within that scope. This im-
plies that at any point in time, a thread is executing in the context of exactly one team
(which may be a subteam of another team and have child teams of its own). Given a
particular team hierarchy, entering a teamsplit or partition statement moves one level
down in the hierarchy, and exiting a statement moves one level up. Statements can be
nested to make use of multi-level hierarchies, and recursion can be used to operate on
hierarchies that do not have a pre-determined depth. Consider the following code, for
example:
public void descendAndWork (Team t ) {

if (t .numChildren ( ) != 0 )
teamsplit (t ) { descendAndWork (t .myChildTeam ( ) ) ; }

else
work ( ) ;

}
This code descends to the bottom of an arbitrary team hierarchy before performing
work. A concrete example that uses this paradigm is the merge sort in §4.2.



In order to meet the composability design goal, the thread IDs returned by
Ti.thisProc() are now relative to the team in which a thread is executing, and the
number of threads returned by Ti.numProcs() is equal to the size of the current team.
Thus, a thread ID is always between 0 and Ti.currentTeam().size()−1, inclusive. A
new function Ti.globalNumProcs() returns the number of threads in the entire pro-
gram, and Ti.globalThisProc() returns a thread’s global rank.

Collective communication and synchronization now operate over the current team.
Both the partition and the teamsplit construct are also considered collective operations,
so they must be textually aligned in the program. The combination of the requirement
that all threads must agree on the set of subteams when entering a partition or teamsplit
construct, dynamic scoping of the constructs, and textual collective alignment ensures
that no circular dependencies exist between different collective operations. In the next
section, we describe how textual collective alignment is enforced.

3.3 Alignment of Collectives

With the introduction of hierarchical teams, alignment of collectives must be checked
dynamically at runtime. The full details of dynamic alignment checking are described
elsewhere [17,18,14], but we will summarize the main ideas here.

Enforcement of collective alignment is divided into two phases, a local tracking
phase and a collective checking phase. In the tracking phase, each thread records the
control flow decisions that it makes that may affect execution of a collective. The Tita-
nium compiler already statically computes which conditionals may do so; such condi-
tionals are a small subset of all conditionals in a program, so the cost of tracking is low.
Memory usage and communication costs can be minimized by computing a running
hash of all such control flow decisions.

The checking phase occurs when a thread reaches a collective operation. Prior to
entering the collective, it waits for a broadcast of the alignment hash from thread 0 in its
current team. Once it receives thread 0’s hash, it compares it to its own and generates an
error if the two hashes do not match. Otherwise it proceeds with the collective operation.
If no thread generates an error, then all agree on the hash, implying that they also agree
on all control flow decisions that affect the collective operation, guaranteeing textual
alignment.

Dynamic alignment checking avoids deadlock by requiring that every collective
operation be preceded by an alignment check. This check itself executes a collective
broadcast over a thread’s current team, but this collective is the same on all the threads
in the team, so it will never deadlock as long as a check is also performed when changing
team contexts.

Previous work has demonstrated that the cost of dynamic alignment tracking and
checking is negligible in actual programs [17]. In addition, an optional debugging mode
for alignment checking is provided, in which the control flow history is compared
between two threads whose hashes mismatch, and the earliest mismatch is reported.
This mode also does not measurably degrade performance. Thus, not only is deadlock
avoided with low overhead, but a meaningful error is generated that directs the program-
mer to the source of the error. This may be far from the point of detection, so alignment
checking can facilitate debugging.



4 Application Case Studies

We now present case studies of four applications we used to guide the design of the
RSPMD language extensions and evaluate their effectiveness: conjugate gradient, par-
allel sort, particle in cell, and stencil.

4.1 Test Platforms

We tested application performance on two machines, a Cray XE6 and an IBM iDat-
aPlex, both located at the National Energy Research Scientific Computing Center
(NERSC) at the Lawrence Berkeley National Laboratory (Berkeley Lab). The Cray
XE6, called Hopper, consists of two twelve-core AMD MagnyCours 2.1 GHz proces-
sors per node, each of which consists of two six-core dies. Each die is referred to as
a non-uniform memory access (NUMA) node, since each die has fast access to its own
memory banks but slower access to the other banks. The IBM iDataPlex system, known
as Carver, is a cluster of eight-core, 2.67 GHz Intel Nehalem processors connected by
a 4X QDR InfiniBand network. Memory considerations limited us to 32 nodes for most
benchmarks and prevented larger problem sizes from being run on the IBM machine.

In most of the benchmark applications, we focused on optimizing distributed per-
formance. As a result, we used performance on a single shared-memory node or NUMA
node as the baseline for our experiments. Optimizing execution solely on shared-
memory multicores is beyond the scope of this paper.

4.2 Algorithmic Hierarchy

We began by examining two algorithms that are difficult to express in the flat SPMD
model: conjugate gradient and merge sort.
Conjugate Gradient. The conjugate gradient (CG) application is one of the NAS
parallel benchmarks [2]. It iteratively determines the minimum eigenvalue of a sparse,
symmetric, positive-definite matrix. The matrix is divided in both dimensions, and each
thread receives a contiguous block of the matrix, with threads placed in row-major
order. The application performs numerous sparse matrix-vector multiplications, as de-
scribed previously in §3.2. In addition to the reductions mentioned there, in each it-
eration of the algorithm, the elements of the source vector must be distributed to the
threads that own a portion of the corresponding matrix column. Thus, team collective
operations are required over both rows and columns of threads.

Prior to our language extensions, Titanium only supported collectives over all
threads in a program. Thus, the original Titanium implementation of CG [8] required
hand-written reductions over subsets of threads. These reductions required extensive
development effort to implement, test, and optimize.

The team implementation of CG, on the other hand, makes use of both row and col-
umn teams. The existing CG code already computes the row and column number of each
thread; we use them to divide the threads into row teams with a call to splitTeamAll(),
which takes in the child team number and rank for the calling thread as arguments. We
then use makeTransposeTeam(), which swaps the child team number and rank for
each thread, to create column teams from row teams.



rowTeam = new Team ( ) ;
rowTeam .splitTeamAll (rowPos , colPos ) ;
columnTeam = rowTeam .makeTransposeTeam ( ) ;

We use all-to-one reductions across each row team to send the result of that row
team to a single thread in the team. We then use a broadcast to send data from that
thread to all threads in the same column. Each reduction or broadcast requires only a
single library call, as shown below.
teamsplit (rowTeam ) { / / Reduce row r e s u l t s t o one t h r e a d .
Reduce .add (allResults , myResults , rowTarget ) ;

}
. . . / / Pe r fo rm r e q u i r e d c o p i e s a c r o s s columns .
teamsplit (columnTeam ) { / / B r o a d c a s t from column s o u r c e .

myOut .vbroadcast (columnSource ) ;
}
The CG application demonstrates the importance of teams for collective operations

among subsets of threads. It also illustrates the need for multiple team hierarchies and
for separating team creation from usage, as the cost of creating teams is amortized over
all iterations of the algorithm.

Figure 2(a) compares the performance of the team-based version of CG to the origi-
nal hand-rolled implementation on a Cray XE6 and an IBM iDataPlex. We show strong
scaling (fixed problem size) results for the Class B problem size. (Both axes in the fig-
ures use logarithmic scale, so ideal scaling would appear as a line on the graphs.) As
expected, the replacement of hand-written all-to-all reductions with optimized GASNet
all-to-one reductions and broadcasts improves performance over the original version.
We achieve speedups over the original code of 1.6x for Class B at 128 threads on the
XE6. On the IBM iDataPlex, Class B only scales until 64 threads, at which point the
team version is 2.1x as fast as the original code.

We also ran experiments using the Class D problem size, though the graph is omitted
for brevity. On the XE6, the team-based version achieves a speedup of 1.5x over the
original code at 1024 threads. On the IBM machine, Class D achieves a speedup of
1.6x at 256 threads, at which point the original version stops scaling, and 2.7x at 512
threads.
Shared-Memory Merge Sort. Merge sort is a canonical example of a divide-and-
conquer algorithm. An initial set of keys is recursively divided in half, until some
threshold is reached. The subsets are sorted individually and then recursively merged
with each other until all keys are in a single sorted set. This algorithm can be paral-
lelized on a shared-memory machine by forking a new thread each time a set of keys
is divided in two. However, since the SPMD model does not allow new threads to be
created, merge sort is difficult to express in the flat SPMD model.

In the RSPMD model, however, merge sort is easily expressible by starting with a
team of all threads and then recursively dividing both the set of keys and the team until
only a single thread remains. Then each thread sequentially sorts its keys, and the sorted
subsets are merged in parallel by assigning each merge operation to one thread from the
subsets that are to be merged.

In order to express merge sort in this way, a team hierarchy is constructed that
consists of a binary tree, in which each node contains half the threads of its parent. The



following code constructs such a hierarchy, using the splitTeam library method to
divide a team in half.
static void divideTeam (Team t ) {
if (t .size ( ) > 1) {

t .splitTeam ( 2 ) ;
divideTeam (t .child ( 0 ) ) ;
divideTeam (t .child ( 1 ) ) ;

}
}
Then each thread walks down to the bottom of the team hierarchy, sequentially sorts its
keys, and then walks back up the hierarchy to perform the merges. In each internal team
node, a single thread merges the results of its two child nodes before execution proceeds
to the next level in the hierarchy. The following code performs the entire algorithm. (The
sequential sort and merge functions are omitted for brevity.)
static void sortAndMerge (Team t ) {
if (Ti .numProcs ( ) == 1)
allRes [myProc ] = SeqSort .sort (myData ) ;

else {
teamsplit (t ) { sortAndMerge (Ti .currentTeam ( ) ) ; }
Ti .barrier ( ) ; / / e n s u r e p r i o r work c o m p l e t e
if (Ti .thisProc ( ) == 0)
allRes [myProc ] = merge (myRes ( ) , otherRes ( ) , newRes ( ) )

}
}

As illustrated in the code above, the shared-memory sorting algorithm is very simple
to implement using the new team constructs. The entire implementation is only about
90 lines of code (not including test code and the sequential quicksort from the Java
standard library) and took just two hours to write and test. This sort is used as part of
the larger distributed sort implementation below, so we will defer performance results
until then.

4.3 Machine Hierarchy

We now turn our attention to optimizing algorithms for hierarchical machines. We ex-
amined three algorithms: distributed sort, stencil, and particle in cell.
Distributed Sort. The first algorithm we examined for hierarchical optimizations was
distributed sorting, specifically the sample sort algorithm [12] on 32-bit integers. This
algorithm consists of two phases: an initial phase that computes pivots based on a sam-
ple of all the keys and then redistributes the keys among all threads according to the
pivots, and a second phase that sorts keys locally.

We explored three different versions of sample sort. The first is a flat version that is
purely distributed, ignoring the hierarchical structure of the machine. This version uses
sample sort across all threads and sequential sorting on each individual thread. In this
version, key redistribution requires n(n − 1) messages where n is the total number of
threads. The second is a composed version that uses sample sort across nodes rather than
threads, but then uses shared-memory merge sort on each node. Here, key redistribution
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Fig. 2. (a) Strong scaling performance of conjugate gradient; (b) distributed sort perfor-
mance, with a constant number of keys per thread.

requires m(m−1) messages, where m is the number of nodes. However, the composed
version uses only a single thread per node for sampling and redistribution, so that it is
equivalent to composing a communication library such as MPI with a shared-memory
library such as Pthreads. The final version is hierarchical; it improves on the composed
version by using all available parallelism in the sample and redistribution phase. The
RSPMD model enable this version to be expressed, since it exposes hierarchy in the
context of a single model.

The composed version, though it does not take full advantage of the hierarchy ex-
posed by RSPMD, does illustrate its composability features. The following is the code
required to implement the composed version, where sampleSort is the sampling and
redistribution code from the flat sample sort:
Team team = Ti .defaultTeam ( ) ;
Team oTeam = team .makeTransposeTeam ( ) ;
partition (oTeam ) { { sampleSort ( ) ; } }
teamsplit (team ) { keys = SMPSort .parallelSort (keys ) ; }

The RSPMD team constructs make this algorithm trivial to implement, requiring
only a few lines of code and 5 minutes of development time. The code calls
Ti.defaultTeam() to obtain a team in which threads are divided according to which
threads share memory. It then uses the makeTransposeTeam() library call to con-
struct a transpose team in which each subteam contains one thread from each node. The
partition construct is then used to perform the sampling and redistribution on one of
those subteams, after which the node teams execute the shared-memory sort. The team
hierarchies in sampleSort() and in the shared-memory sort compose cleanly, without
any modifications required.

Figure 2(b) compares the number of keys sorted per thread per second in the dif-
ferent versions of distributed sort. On both machines, the hierarchical version scales
better than the flat version, resulting in a speedup of 1.4x for the hierarchical version



2

3

4

5

6

7

8

1 2 4 8 16 32 64 128 256 512

Ti
m

e 
(s

) 

Nodes (6 Cores/Node Cray, 8/Node IBM) 

Distributed Stencil 
(2563 Points/Node, 100 Timesteps) 

Cray composed
Cray hierarchical
IBM composed
IBM hierarchical

(a)

0.25

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64 128 256

Ti
m

e 
(s

) 

Nodes (6 Cores/Node Cray, 8/Node IBM) 

Distributed Particle in Cell 
(2563 Sphere, 100 Timesteps) 

Cray flat
Cray hierarchical
IBM flat
IBM hierarchical

(b)

Fig. 3. (a) Weak scaling performance of stencil; (b) strong scaling performance of par-
ticle in cell.

over the flat version on 512 NUMA nodes (3072 cores) of the XE6 and 1.2x on 32
nodes (256 cores) of the IBM iDataPlex. Since sorting in general is not a linear time
algorithm, the decrease in efficiency shown in Figure 2(b) at higher numbers of threads
is not unexpected.

As can be seen in Figure 2(b), the composed version performs significantly worse
than the flat and hierarchical versions on the Cray machine. Since the composed version
is equivalent to composing distributed and shared-memory libraries, this demonstrates
the importance of exposing hierarchy within a single model to obtain optimal perfor-
mance.

Stencil. As another example of comparing the composition of distributed and shared-
memory code to a true hierarchical version, we examined a stencil benchmark. A stencil
is a nearest-neighbor computation over a structured n-dimensional grid and consists of
multiple iterations in which the value of each grid point is updated as a function of
its previous value and those of its neighboring points. In this benchmark, we execute
a seven-point stencil over a three-dimensional grid. Since we are primarily concerned
with optimizing distributed communication, we use a naı̈ve, untuned shared-memory
version of stencil as part of our experiments.

We compared two implementations of distributed stencil. As with distributed sort,
the composed version uses a single Titanium thread per node to perform communica-
tion and multiple threads per node to perform computation in the external library. We
also wrote a hierarchical version that uses multiple threads for both communication and
computation. Figure 3(a) shows weak scaling (constant problem size per thread) perfor-
mance of the stencil variants. On both machines, the hierarchical version outperforms
the composed variant at higher node counts, improving performance by up to 7% on the
Cray machine and 14% on the iDataPlex.

Particle in Cell. The final benchmark we examined was particle in cell, which models
the communication pattern in one phase of a heart simulation written in Titanium [22].



In this phase, a set of particles interact with an underlying three-dimensional fluid grid.
We model this interaction by updating each fluid cell with a value from each of the
particles that the cell contains. Both particles and the fluid grid are divided among the
threads; however, a thread’s particles are not generally located in its portion of the fluid,
requiring communication to perform updates.

We compared two versions of particle in cell. The flat version divides the fluid
grid and particles between each thread, which separately process their fluid cells and
particles, performing any required communication directly between different threads. In
the hierarchical version, the fluid and particles are divided among nodes, and the threads
in a node cooperatively process the node’s fluid cells and particles. In this version,
communication is aggregated between nodes.

Figure 3(b) compares the performance of the two versions of particle in cell on a
2563 fluid grid with particles on the surface of a sphere. The flat algorithm does not
scale beyond 16 nodes on the Cray machine and 8 nodes on the IBM machine, while
the hierarchical algorithm scales up to 128 and 32 nodes, respectively. On the other
hand, the flat algorithm performs about twice as fast as the hierarchical version up to
the former’s scaling limits. This is largely due to the fact that the Titanium and GASNet
runtimes are not optimized for shared memory. As a result, though the hierarchical
algorithm does scale more, it requires four times as many processors to improve running
time beyond the best performance of the flat algorithm.

5 Conclusion

In this paper, we presented RSPMD, an extension of SPMD that enables hierarchi-
cal programming in an explicitly parallel model. We designed RSPMD extensions to
the Titanium language, combining a team data structure and dynamically scoped us-
age constructs to prevent erroneous usage of teams. We also described how to enforce
textual alignment of team collectives at runtime, further avoiding errors in using team
collectives.

We implemented four benchmarks using the RSPMD model: conjugate gradient,
sorting, stencil, and particle in cell. We demonstrated that hierarchical teams enable
divide-and-conquer algorithms such as sorting to be implemented elegantly, and that
team collectives provide better performance and expressiveness than hand-written al-
ternatives in conjugate gradient. We also demonstrated that hierarchical teams enable
optimizations for hierarchical machines to be written in the context of a single program-
ming model, enabling increased performance in sorting and better scaling in particle in
cell. We further showed that our hierarchical model beats the standard mechanism of
combining a distributed library with a shared-memory library in both sorting and sten-
cil. These results demonstrate that the RSPMD model provides significant expressive-
ness and performance advantages over the flat SPMD model.
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