

Hierarchical Work Stealing on
Manycore Clusters

Seung-Jai Min1, Costin Iancu1, Katherine Yelick1,2

1Lawrence Berkeley National Laboratory and
2University of California at Berkeley

Motivation

• SPMD (Single-Program Multiple-Data) model in UPC
– Fixed set of threads matches the underlying hardware

– The global address space handles irregular data accesses

– Irregular computational patterns:
• Not statically load balanced (even with graph partitioning, etc.)

• The work and parallelism unfold dynamically throughout the
program execution

– No direct support for applications with dynamic tasking

– Some kind of dynamic load balancing needed with a task
queue

HotSLAW

• One-sided data access mechanism to implement
work-stealing efficiently on large scale systems

• Builds on prior work on dynamic tasking
– “SLAW” by Guo et al. (Rice Univ.)

• Scalable Locality-aware Adaptive Work-Stealing

• Combines work-first and help-first with bounded memory usage

• Allows stealing only within a place (a user defined locality domain)

– “Scalable Work Stealing” by Dinan et al. (Ohio State Univ.)
• Work-stealing for large scale distributed-memory systems

• Steals a fixed ratio of work per event (HalfSteal)

HotSLAW Implementation

• A global queue is stitched from per-thread local queue
• Per-thread Local queue = shared region + private region

– Shared region: stealing from other threads is serialized through a lock
• FIFO queue: the oldest task contains the largest amount of work in the task graph

– Private region
• LIFO stack: the most recently created task has a higher chance of exploiting $ locality

chunk

Thread 0 Thread 1 Thread 2 Thread 3

Tasks in the shared region Tasks in the private region
head split tail

Global Task Queue

HotSLAW Implementation (cont.)

• Hierarchical Work Stealing
– HVS (Hierarchical Victim Selection)

• Determines from which thread a thief thread steals work

– HCS (Hierarchical Chunk Selection)
• Dictates how much work a thief thread teals from the victim

Socket Socket

Node

Socket Socket

Node

Cluster

HVS (Hierarchical Victim Selection)

• RANDOM selection has been the state-of-the-art strategy in
selecting victims for work-stealing in shared-memory domain

• SLAW limits work-stealing only within a place in SMP
– Places provide for a two-level abstract view (local vs. non-local)

– A place is defined as sharing an L2 cache in their study

• HotSLAW supports multi-level hierarchy
– Provides API to control # of locality levels and # of CPUs per level

– A thread first attempts to steal from the nearest neighbors, and
gradually moves up the locality hierarchy

– Number of steal attempts: # of cores for SMP, 4xlog(N) for cluster

HCS (Hierarchical Chunk Selection)

• Work stealing is sensitive to the # of tasks stolen. (this
amount is referred to as chunk size)

• Fixed chunk policy
– Steal one task from the tail of the victim’s queue, hoping to maximize

the probability of stealing the task with the max amount of work

• StealHalf policy
– Thieves steal one half of the victim’s (shared) queue.

– StealHalf policy reduces the number of expensive inter-node stealing

• HCS (Hierarchical Chunk Selection) Policy
– Based on the distance between the thief and the victim, HCS steals a

fixed-sized chunk for lower hierarchy levels and uses StealHalf at the
topmost level, e.g. inter-node.

UPC Task Library API

• High-level API:
– Concise and expressive

– abstracts concurrent task
management details

• Task
– Function granularity with

a signature containing
pointers to input and out

 void FIB(int *n, int *out) {

 int n1 = *n-1;

 int n2 = *n-2;

 int x, y;

 if (*n < 2){ /* CUTOFF */

 *out = *n;

 return;

 }

 taskq_put(taskq, FIB, &n1, &x);

 taskq_put(taskq, FIB, &n2, &y);

 taskq_wait(taskq);

 *out = x + y;

 }

void my_func(void *input, void *output);

Input and output are contiguous memory
Input is copied into the library space and
travels with the task on migration

UPC Task Library API (cont.)
// allocates a global task queue; it is a collective function
taskq_t * taskq_all_alloc(int, …);

// frees a global task queue; it is a collective function
void taskq_all_free(taskq_t *);

// creates a task using the input arguments and puts it into the task queue
int taskq_put(taskq_t *, void *func, void *in, void *out);

// removes a task from the top of the local task queue and executes it
int taskq_execute(taskq_t *);

// attempts to steal tasks from random victim threads
int taskq_steal(taskq_t *);

// waits tasks that are spawned before it to complete; a blocking operation
void taskq_wait(taskq_t *);

// returns 1 if the task queue is globally empty; it is a collective function
int taskq_all_isEmpty(bupc_taskq_t *);

*This list shows the main APIs. It is not a complete list.

Evaluation Setup

• System
– Shared-memory machine

• Two-socket Quad-core Intel Xeon 5530 (Nehalem) 2.4GHz

– Carver: IBM iDataPlex Distributed-memory system
• Two Quad-core Intel Xeon 5500 (Nehalem) 2.67 GHz

• A total of 8 cores per node, connected by 4X QDR InfiniBand

Evaluation Setup (cont.)

• Benchmarks
– Fibonacci: recursively creates a Fibonacci sequence

– N-Queens: place N Queens on a NxN chess board

– Unbalanced Tree Search (UTS): counts nodes in a tree

– SparseLU: computes LU matrix factorization

• Developed UPC versions using the UPC Task library

• OpenMP implementations
– BOTS (Barcelona OpenMP Task Suites): Fib, NQ, SparseLU

– UTS from UTS1-1 distribution website

Work Stealing Overhead

1

10

100

4 8 16

32

64

12
8

25
6

51
2 1K

2K

4K

8K

16
K

32
K

64
K

12
8K

25
6K

51
2K

1M

A
vg

. S
te

al
 O

ve
rh

ea
d

in
 u

se
c

Task Data Size in Bytes

 NUMA Effect on the Work Stealing Overhead

Inter-Node

Inter-Socket

Intra-Socket

Average time to steal an empty task with varying input argument size on IBM iDataPlex

36 us

3.8 us

2 us

Task Queue Behavior

0

5

10

15

20

25

30

1 101 201 301 401 501 601 701 801 901

N
um

be
r

of
 T

as
ks

Samples

0

2000

4000

6000

8000

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301

N
um

be
r

of
 T

as
ks

Samples

Fibonacci

UTS (T3L)

Unbounded task queue
with help-first

Sampled a random task
queue every 1000
taskq_put

Bounded Queue

• Static memory allocation for task queue management

• Simple implementation and guaranteed memory bound

• This approach fits well with practical optimization goal:
– Generating work and parallelism at application startup using help-first,

then switching to work-first and executing tasks inline to avoid task
creation and manipulation overhead

Thread 0 Thread 1 Thread 2 Thread 3

Tree-Depth Cutoff Serialization
Ta

sk
in

g
Se

ri
al

iz
e

+ Good for structured task tree

- Can prematurely serialize a large sub-tree

- Works only for recursion tree style, but
not for parallel-for style parallelism

Cutoff

Cut-off Serialization

6 9 12 15 18 21 24 27 30 33 36 39

2 4 6 8 10 12 14 16
0
5

10
15
20
25
30
35
40
45
50

Depth of the Task Execution Tree

Depth of the Task Queue

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Fibonacci

10K 11K 12K 13K 14K 15K 16K 17K 18K 19K 20K

10

20

30

40

50

60

70

80

16
0

32
0

64
0 1K

2K

5K

 0
2
4
6
8

10
12
14
16

Depth of the Task Execution Tree

Depth of the Task Queue

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

UTS (T3L)

24.9%

x3

Tree-Depth Cutoff Bounded Queue

Performance of Bounded-Queue

0
1
2
3
4
5
6
7
8
9

FIB (47) NQueens(14) UTS(T1L) UTS(T2L) UTS(T3L) SpLU(256,16)

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 S

er
ia

l
Ex

ec
. T

im
e

8 Core Nehalem SMP

UPC Unbounded Queue UPC Bounded Queue

Both UPC versions are optimized with tree-depth cutoff serialization (except SparserLU)
Bounding the queues provides additional performance improvements up to 18%

Benchmark Characteristics

Benchmark Tasks
Created

Avg. Task
Time

Input /
Output Size

(bytes)

Task
Creation

Ovhd

Steal
count

Tasks Serialized

Fibonacci 2,692,537 1.163 us 4 / 8 0.172 us 95 258,928
 (8.7%)

N-Queens 306,719 23.270 us 80 / 4 0.174 us 47 129,012
(29.6%)

UTS (T1L) 102,181,082 0.089 us 32/ 0 0.162 us 485 93,553,030
(47.8%)

UTS (T2L) 96,793,510 0.114 us 32/ 0 0.161 us 378 82,249,556
(45.9%)

UTS (T3L) 111,345,631 0.075 us 32/ 0 0.159 us 46703 108,983,482
(49.4%)

SparseLU 1,430,912 6.281 us 16,16,24/ 0 0.166 us 2320 1,344,733
(48.4%)

Victim Selection Policies on SMP

0

0.5

1

1.5

2

2.5

FIB (47) NQueens(14) UTS(T1L) UTS(T2L) UTS(T3L) SpLU(256,16)

Ex
ec

. T
im

e
N

or
m

al
iz

ed
 to

 g
cc

-
O

pe
nM

P
(L

ow
er

 th
e

Be
tt

er
)

gcc-OpenMP icc-OpenMP UPC (Intra-Socket)

UPC (HVS) UPC (RAND) UPC (RAND+BestChunk)

All UPC versions use fixed chunk size of 1, except the UPC (RAND+BestChunk) uses
the best fixed-chunk sizes searched

Victim Selection Policies

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIB(56) Nqueens(16) UTS (T1L) UTS (T2L) UTS (T3L) SpLU(200,100)

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 th

e
Ra

nd
om

 P
ol

ic
y

256 cores on Carver Cluster

INTRA-NODE HVS RANDOM

Fixed Chunk Selection

0

50

100

150

200

250

300

FIB Nqueens UTS(T1L) UTS(T2L) UTS(T3L) SparseLU

Sp
ee

du
p

no
rm

al
iz

ed
 to

 S
er

ia
l

Ex
ec

ut
io

n
Ti

m
e

Benchmarks

ChunkSize=1 ChunkSize=2 ChunkSize=4 ChunkSize=8 ChunkSize=16

Performance drops drastically except UTS (T3L) and SparseLU

Carver cluster with 256 cores

Hierarchical Chunk Selection

0

50

100

150

200

250

300

FIB Nqueens UTS(T1L) UTS(T2L) UTS(T3L) SparseLU

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 S

er
ia

l
Ex

ec
ut

io
n

Ti
m

e

Benchmarks

ChunkSize=1 ChunkSize=2 ChunkSize=4 ChunkSize=8 ChunkSize=16

Robust performance on the chunk sizes variations

Carver cluster with 256 cores

Chunk Selection Policy

0

50

100

150

200

250

300

FIB(56) Nqueens(16) UTS(T1L) UTS(T2L) UTS(T3L) SpLU(256,64)

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 S

er
ia

l E
xe

cu
ti

on

Ti
m

e

Fixed-Chunk (Best) StealHalf HCS Random+StealHalf
Fixed-Chunk (Best), StealHalf, and HCS use HVS, while Random+StealHalf uses random
Fixed-Chunk (Best): FIB, Nqueens, UTS(T1L), and UTS(T2L) StealHalf: UTS (T3L)

IBM iDataPlex cluster (256 cores)

HCS+HVS better than Random+StealHalf by 27%

Conclusion
• HotSLAW: a dynamic tasking library for the Unified Parallel C

(UPC) programming language.

• HotSLAW provides a simple and effective way of adding task
parallelism to SPMD programs

• HotSLAW implements Bounded Queue

• To exploit locality, we presented two hierarchical work-
stealing optimization techniques: HVS and HCS

• Hierarchical victim selection (HVS) steals work from the
nearest available victims to preserve locality

• Hierarchical chunk selection (HCS) dynamically determines the
amount of work to steal based on the locality of the victim
thread

Conclusion (cont.)

• We evaluated HotSLAW performance on both shared- and
distributed-memory architectures

• On shared-memory systems, HotSLAW provides performance
comparable to manually optimized OpenMP implementations

• On distributed-memory systems:
– HVS improves performance by up to 52% when compared to the

default random selection

– HCS improves performance by up to 122% compared to the StealHalf
method

– The combination of HVS and HCS enables HotSLAW to achieve 27%
better performance than the state-of-the-art approach using random
victim selection and HalfSteal strategy

Thank You

Work Stealing Overhead (cont.)

1

10

100

1000

10000

100000

M
em

or
y

Ba
nd

w
id

th
 in

 M
B/

s

UPC_MEMGET Performance on Carver

Intra-node

Inter-node

Memory bandwidth on the IBM iDataPlex cluster. Intra-node measures the
inter-socket bandwidth and inter-node measures the InifiniBand bandwidth

Two orders of magnitude

50%

Victim Selection Policies on SMP

0
1
2
3
4
5
6
7
8
9

FIB (47) NQueens(14) UTS(T1L) UTS(T2L) UTS(T3L) SpLU(256,16)

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 S

er
ia

l
Ex

ec
. T

im
e

gcc-OpenMP icc-OpenMP UPC (Intra-Socket)

UPC (HVS) UPC (RAND) UPC (RAND+BestChunk)

All UPC versions use fixed chunk size of 1, except the UPC (RAND+BestChunk) uses
the best chunk sizes searched

	Hierarchical Work Stealing on Manycore Clusters
	Motivation
	HotSLAW
	HotSLAW Implementation
	HotSLAW Implementation (cont.)
	HVS (Hierarchical Victim Selection)
	HCS (Hierarchical Chunk Selection)
	UPC Task Library API
	UPC Task Library API (cont.)
	Evaluation Setup
	Evaluation Setup (cont.)
	Work Stealing Overhead
	Task Queue Behavior
	Bounded Queue
	Tree-Depth Cutoff Serialization
	Cut-off Serialization
	Performance of Bounded-Queue
	Benchmark Characteristics
	Victim Selection Policies on SMP�
	Victim Selection Policies
	Fixed Chunk Selection
	Hierarchical Chunk Selection
	Chunk Selection Policy
	Conclusion
	Conclusion (cont.)
	Thank You
	Work Stealing Overhead (cont.)
	Victim Selection Policies on SMP

