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Motivation 

• SPMD (Single-Program Multiple-Data) model in UPC 
– Fixed set of threads matches the underlying hardware  

– The global address space handles irregular data accesses 

– Irregular computational patterns: 
• Not statically load balanced (even with graph partitioning, etc.) 

• The work and parallelism unfold dynamically throughout the 
program execution 

– No direct support for applications with dynamic tasking 

– Some kind of dynamic load balancing needed with a task 
queue 

 



 
 

HotSLAW 

• One-sided data access mechanism to implement 
work-stealing efficiently on large scale systems 

• Builds on prior work on dynamic tasking 
– “SLAW” by Guo et al. (Rice Univ.)  

• Scalable Locality-aware Adaptive Work-Stealing 

• Combines work-first and help-first with bounded memory usage 

• Allows stealing only within a place (a user defined locality domain)  

– “Scalable Work Stealing” by Dinan et al. (Ohio State Univ.) 
• Work-stealing for large scale distributed-memory systems 

• Steals a fixed ratio of work per event (HalfSteal) 



 
 

HotSLAW Implementation 

• A global queue is stitched from per-thread local queue 
• Per-thread Local queue = shared region + private region 

– Shared region: stealing from other threads is serialized through a lock 
• FIFO queue: the oldest task contains the largest amount of work in the task graph 

– Private region 
• LIFO stack: the most recently created task has a higher chance of exploiting $ locality  

chunk 

Thread 0 Thread 1 Thread 2 Thread 3 

Tasks in the shared region Tasks in the private region 
head split tail 

Global Task Queue 



 
 

HotSLAW Implementation (cont.) 

• Hierarchical Work Stealing 
– HVS (Hierarchical Victim Selection) 

• Determines from which thread a thief thread steals work 

– HCS (Hierarchical Chunk Selection) 
• Dictates how much work a thief thread teals from the victim 
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HVS (Hierarchical Victim Selection) 

• RANDOM selection has been the state-of-the-art strategy in 
selecting victims for work-stealing in shared-memory domain  

• SLAW limits work-stealing only within a place in SMP 
– Places provide for a two-level abstract view (local vs. non-local) 

– A place is defined as sharing an L2 cache in their study 

• HotSLAW supports multi-level hierarchy 
– Provides API to control # of locality levels and # of CPUs per level 

– A thread first attempts to steal from the nearest neighbors, and 
gradually moves up the locality hierarchy 

– Number of steal attempts: # of cores for SMP, 4xlog(N) for cluster   



 
 

HCS (Hierarchical Chunk Selection) 

• Work stealing is sensitive to the # of tasks stolen. (this 
amount is referred to as chunk size) 

• Fixed chunk policy 
– Steal one task from the tail of the victim’s queue, hoping to maximize 

the probability of stealing the task with the max amount of work 

• StealHalf policy 
– Thieves steal one half of the victim’s (shared) queue.  

– StealHalf policy reduces the number of expensive inter-node stealing  

• HCS (Hierarchical Chunk Selection) Policy 
– Based on the distance between the thief and the victim, HCS steals a 

fixed-sized chunk for lower hierarchy levels and uses StealHalf at the 
topmost level, e.g. inter-node. 



 
 

UPC Task Library API 

• High-level API:  
– Concise and expressive 

– abstracts concurrent task 
management details  

• Task 
– Function granularity with 

a signature containing 
pointers to input and out 

 void FIB( int *n, int *out ) { 

      int n1 = *n-1; 

      int n2 = *n-2; 

      int x, y; 

      if (*n < 2){  /* CUTOFF */ 

         *out = *n;  

         return; 

     }   

      taskq_put(taskq, FIB, &n1, &x); 

      taskq_put(taskq, FIB, &n2, &y); 

      taskq_wait(taskq); 

      *out = x + y; 

 } 

void my_func(void *input, void *output); 

Input and output are contiguous memory 
Input is copied into the library space and 
travels with the task on migration 



 
 

UPC Task Library API (cont.) 
// allocates a global task queue; it is a collective function 
taskq_t * taskq_all_alloc(int, …); 

// frees a global task queue; it is a collective function 
void taskq_all_free(taskq_t *); 

// creates a task using the input arguments and puts it into the task queue 
int taskq_put(taskq_t *, void *func, void *in, void *out); 

// removes a task from the top of the local task queue and executes it 
int taskq_execute(taskq_t *); 

// attempts to steal tasks from random victim threads  
int taskq_steal(taskq_t *); 

// waits tasks that are spawned before it to complete; a blocking operation 
void taskq_wait(taskq_t *); 

// returns 1 if the task queue is globally empty; it is a collective function 
int  taskq_all_isEmpty(bupc_taskq_t *); 

*This list shows the main APIs. It is not a complete list. 



 
 

Evaluation Setup 

• System 
– Shared-memory machine 

• Two-socket Quad-core Intel Xeon 5530 (Nehalem) 2.4GHz 

– Carver: IBM iDataPlex Distributed-memory system 
• Two Quad-core Intel Xeon 5500 (Nehalem) 2.67 GHz 

• A total of 8 cores per node, connected by 4X QDR InfiniBand 

 



 
 

Evaluation Setup (cont.) 

• Benchmarks 
– Fibonacci: recursively creates a Fibonacci sequence 

– N-Queens: place N Queens on a NxN chess board 

– Unbalanced Tree Search (UTS): counts nodes in a tree  

– SparseLU: computes LU matrix factorization 

• Developed UPC versions using the UPC Task library 

• OpenMP implementations 
– BOTS (Barcelona OpenMP Task Suites): Fib, NQ, SparseLU 

– UTS from UTS1-1 distribution website 

 



 
 

Work Stealing Overhead 
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Task Queue Behavior 
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Sampled a random task 
queue every  1000 
taskq_put  



 
 

Bounded Queue 

• Static memory allocation for task queue management 

• Simple implementation and guaranteed memory bound 

• This approach fits well with practical optimization goal:  
– Generating work and parallelism at application startup using help-first, 

then switching to work-first and executing tasks inline to avoid task 
creation and manipulation overhead 

Thread 0 Thread 1 Thread 2 Thread 3 
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- Can prematurely serialize a large sub-tree 

- Works only for recursion tree style, but 
not for parallel-for style parallelism 
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Cut-off Serialization 
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Fibonacci 

10K 11K 12K 13K 14K 15K 16K 17K 18K 19K 20K 

10
 

20
 

30
 

40
 

50
 

60
 

70
 

80
 

16
0 

32
0 

64
0 1K

 
2K

 
5K

 0 
2 
4 
6 
8 

10 
12 
14 
16 

Depth of the Task Execution Tree 

Depth of the Task Queue 

Ex
ec

ut
io

n 
Ti

m
e 

in
 S

ec
on

ds
 

UTS (T3L) 

24.9% 

x3 

Tree-Depth Cutoff Bounded Queue 



 
 

Performance of Bounded-Queue 
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Both UPC versions are optimized with tree-depth cutoff serialization (except SparserLU) 
Bounding the queues provides additional performance improvements up to 18% 



 
 

Benchmark Characteristics 

Benchmark Tasks 
Created 

Avg. Task 
Time 

Input / 
Output Size 

(bytes) 

Task 
Creation 

Ovhd 

Steal 
count 

Tasks Serialized 

Fibonacci 2,692,537 1.163 us 4 / 8  0.172 us 95 258,928 
 (8.7%) 

N-Queens 306,719 23.270 us 80 / 4  0.174 us 47 129,012  
(29.6%) 

UTS (T1L) 102,181,082 0.089 us 32/ 0  0.162 us 485 93,553,030 
(47.8%) 

UTS (T2L) 96,793,510 0.114 us 32/ 0  0.161 us 378 82,249,556 
(45.9%) 

UTS (T3L) 111,345,631 0.075 us 32/ 0  0.159 us 46703 108,983,482 
(49.4%) 

SparseLU 1,430,912 6.281 us 16,16,24/ 0  0.166 us 2320 1,344,733 
(48.4%) 



 
 

Victim Selection Policies on SMP 
 

0 

0.5 

1 

1.5 

2 

2.5 

FIB (47) NQueens(14) UTS(T1L) UTS(T2L) UTS(T3L) SpLU(256,16) 

Ex
ec

. T
im

e 
N

or
m

al
iz

ed
 to

 g
cc

-
O

pe
nM

P 
(L

ow
er

 th
e 

Be
tt

er
) 

gcc-OpenMP icc-OpenMP UPC (Intra-Socket) 

UPC (HVS) UPC (RAND) UPC (RAND+BestChunk) 

All UPC versions use fixed chunk size of 1, except the UPC (RAND+BestChunk) uses 
the best fixed-chunk sizes searched 



 
 

Victim Selection Policies 
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Fixed Chunk Selection 
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Hierarchical Chunk Selection 
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Chunk Selection Policy 
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HCS+HVS better than Random+StealHalf by 27% 



 
 

Conclusion 
• HotSLAW: a dynamic tasking library for the Unified Parallel C 

(UPC) programming language.  

• HotSLAW provides a simple and effective way of adding task 
parallelism to SPMD programs 

• HotSLAW implements Bounded Queue 

• To exploit locality, we presented two hierarchical work-
stealing optimization techniques: HVS and HCS 

• Hierarchical victim selection (HVS) steals work from the 
nearest available victims to preserve locality  

• Hierarchical chunk selection (HCS) dynamically determines the 
amount of work to steal based on the locality of the victim 
thread 



 
 

Conclusion (cont.) 

• We evaluated HotSLAW performance on both shared- and 
distributed-memory architectures 

• On shared-memory systems, HotSLAW provides performance 
comparable to manually optimized OpenMP implementations 

• On distributed-memory systems:  
– HVS improves performance by up to 52% when compared to the 

default random selection 

– HCS improves performance by up to 122% compared to the StealHalf 
method 

– The combination of HVS and HCS enables HotSLAW to achieve 27% 
better performance than the state-of-the-art approach using random 
victim selection and HalfSteal strategy 



 
 

Thank You 



 
 

Work Stealing Overhead (cont.) 
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Victim Selection Policies on SMP 
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