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programming models
e Take advantage of one-sided communication
« Show performance advantage on clusters
with RDMA hardware, as well as shared

50

40

MFlops / thread

memor - optimized) and 1D o
. Demons tryate scalability of UPC = Fully leverage RDMA capabilities of partitioned OptarorViiiand - Alpha/Eland DISL2 - xB6iMyrinet DIo4
. NAS FT: .5 TFlops on 512p Itanium/Elan4 modern networks versions e s TR oun
e Linpack: 4.4 Tflops on 1024p Itanium/Elan4 * Berkeley UPC 1006 "F1op rate in UPC Blocking and Norblocking FT  Bottleneck is reductions, which are
2 Tflops on 512p XT3/Portals compiler SUpports || g o s | | latency-limited
 Demonstrate ease-of-use on some challenging non-blocking bU”§ o « UPC version overlaps multi-word
parallelization problems memory E ool reductions with the local SPMV
 Delaunay triangulation extensions ST R computations
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« Each UPC process consists of multiple *Multithreaded UPC code .,
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that yield on long latency blocked serial code of | .~ .
communication operations Ng and Peyton <A
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overlap enhance performance i
» Dependencies tracked on each node vialevel-3 BLAS --
using a scoreboard. Threads execute operations ™ Py o\ =
after all dependencies are satisfied *Block columns receive ™| = -4 %.a& “Thanks 0 the ANAG group at LBL
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