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MFlop rate in UPC Blocking and Non-blocking FT

UPC Blocking
UPC Non-Blocking

Goals of Application 
Projects

3D FFTs in UPC Conjugate Gradient in UPC

Fluid Dynamics

Triangulation in UPC

• Finite difference hyperbolic solver  in UPC
• Numerics in FORTRAN*
• Data/control structures in UPC

*Thanks to the ANAG group at LBL
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• Bottleneck is reductions, which are
latency-limited

• UPC version overlaps multi-word 
reductions with the local SPMV 
computations

• Outperforms MPI version by up to 10%

• Demonstrate that UPC can outperform other 
programming models
• Take advantage of one-sided communication
• Show performance advantage on clusters

with RDMA hardware, as well as shared 
memory

• Demonstrate scalability of UPC
• NAS FT: .5 TFlops on 512p Itanium/Elan4
• Linpack: 4.4 Tflops on 1024p Itanium/Elan4

2 Tflops on 512p XT3/Portals
• Demonstrate ease-of-use on some challenging 
parallelization problems
• Delaunay triangulation
• Hyperbolic PDE Solver
• Sparse Cholesky factorization (ongoing)

• UPC Linpack code is compliant with 
Top500 Benchmark (HPL)

• Dense case is warm-up for sparse 
factorizations

• Dependencies, tuning of block sizes, 
overlap/lookahead are common 
challenges

• UPC Linpack is less than ½ the code size of 
MPI HPL 

• Novel multi-threading on SPMD  latency 
tolerance

• Portable co-operative thread package 
built using only function calls and 
returns

• Each UPC process consists of multiple
threads (one for each major operation) 
that yield on long latency 
communication operations

• Threads also allow for algorithmic
overlap

• Dependencies tracked on each node 
using a scoreboard.  Threads execute 
after all dependencies are satisfied

• Memory-constrained lookahead with 
deadlock avoidance allows for flexible 
execution schedule

Linpack in UPC

• FFT bottleneck is (all-to-all) communication
• Limited by bisection bandwidth 
• Bisection bandwidth is increasingly expensive
Want to use “all the wires all the time”
 Send early and often: same total data 

spread over longer period of time 
to avoid bottleneck

 Fully leverage RDMA capabilities of
modern networks

• CG: Iterative 
sparse solver w/ 
Sparse Matrix-
Vector Multiply 
(SPMV)

• 2D (NAS-
optimized) and 1D 
partitioned 
versions

• Warm-up for fully adaptive code
• Mach 2 wave in a 2-D periodic 

chamber with a dense fluid in the 
shape of the letters:  U P C

• Berkeley UPC 
compiler supports 
non-blocking bulk 
memory 
extensions

• Non-blocking FT 
version: ~30 extra 
lines of UPC code 

• Default NAS FT Fortran/MPI 
• communicates all at once in a big all-to-all
• network is idle while processor computes

• UPC implementation overlaps
• sends data as it becomes available 
• vary granularity of overlap: slabs or pencils

• Slabs win in MPI: overlap is good, but fine-
grained overlap less effective due to high msg 
overheads

• Pencils win in UPC: low overhead + benefit of 
better local memory locality (smaller msgs)

• 2D Delaunay triangulation 
• based on Triangle software

• Parallel version  incorporates:
• Dynamic load balancing
• App-level software caching
• Parallel sortingFT MFlops comparison - MPI vs. UPC

Sparse Cholesky in UPC
• Multithreaded UPC code

• Based on left-looking, 
blocked serial code of 
Ng and Peyton

• Choice of block size to 
enhance performance 
via level-3 BLAS 
operations

• Block columns receive 
updates from earlier 
block columns

• After all updates are received a block
column is factorized

• Code written and tuning underway

NAS FT Performance Comparison
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LU Performance Comparison
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