Berkeley UPC Applications

http://upc.lbl.gov

Goals of Application 3D FFTs in UPC

Conjugate Gradient in UPC

PrOJeCtS FFT bottleneck is (all-to-all) communication . CG: Iterative - mupic
.. . . : . O w/ Overlap
 Demonstrate that UPC can outperform other Limited by bisection bandwidth sparse solverw/ _* = UPC w Overtap

70

*Bisection bandwidth is increasingly expensive Sparse Matrix-
= Want to use “all the wires all the time” Vector Multiply
= Send early and often: same total data (SPMV) N

spread over longer period of time . 2D (NAS- 20
to avoid bottleneck 10

60

programming models
e Take advantage of one-sided communication
« Show performance advantage on clusters
with RDMA hardware, as well as shared

50

40

MFlops / thread

memor - optimized) and 1D o
. Demons tryate scalability of UPC = Fully leverage RDMA capabilities of partitioned OptarorViiiand - Alpha/Eland DISL2 - xB6iMyrinet DIo4
. NAS FT: .5 TFlops on 512p Itanium/Elan4 modern networks versions e s TR oun
e Linpack: 4.4 Tflops on 1024p Itanium/Elan4 * Berkeley UPC 1006 "F1op rate in UPC Blocking and Norblocking FT Bottleneck is reductions, which are
2 Tflops on 512p XT3/Portals compiler SUpports || g o s | | latency-limited
 Demonstrate ease-of-use on some challenging non-blocking bU”§ o « UPC version overlaps multi-word
parallelization problems memory E ool reductions with the local SPMV
 Delaunay triangulation extensions ST R computations
« Hyperbolic PDE Solver . Non-blocking FT ¢ 8 BB B 3 BB BB || : Outperforms MPI version by up to 10%
e Sparse Cholesky factorization (ongoing) version: ~30 extra =
_ _ ines of UPC code , AN NN HN HN HN HE Triangulation in UPC
Linpack in UPC S

e Default NAS FT Fortran/MPI
LU Performance Comparison ecommunicates all at once in a big all-to-all
e network is idle while processor computes
« UPC implementation overlaps
e —— *sends data as it becomes available
B MPI/HPL evary granularity of overlap: slabs or pencils

Cray XT3
512

Cray X1
128/124

NAS FT Performance Comparison
1100

System / Processor count

e — PR
Opteron e S (1 E) R
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% % e | A | [- e 2D Delaunay triangulation
% Peak Performance R | e - :
R . | (N (. pbased on Triangle software
« UPC Linpack code is compliant with w0 M BRI T B I Parallel version incorporates:
Top500 Benchmark (HPL) 0 » Dynamic load balancing
« Dense case is warm-up for sparse 0 * App-level software caching
factorizations p“iﬁngnl "g%ﬁd ila{gi It%?fz Cc%?f %ae%} e Parallel sorting
« Dependencies, tuning of block sizes, nterconnect / Processor / Thread count
overlap/lookahead are common e Slabs win in MPI: overlap Is good, but fine- FI UId DynamICS
cha!lenges_ . grained overlap less effective due to high msg o | | _
* UPC Linpack is less than %2 the code size of overheads « Finite difference hyperbolic solver in UPC
MPI I_IIPL tith . S » Pencils win in UPC: low overhead + benefit of * Numerics in FORTRAN*
) tNo(I);/reannc]:g ti-threading on SPMD atency better local memory locality (smaller msgs) e Data/control structures in UPC
. Eo_rtabl_e co-operatlve_thread package Sparse ChOleS ky N UPC
uilt using only function calls and
returns
« Each UPC process consists of multiple *Multithreaded UPC code .,
threads (one for each major operation) * Based on left-looking, ™\
that yield on long latency blocked serial code of | .~ .
communication operations Ng and Peyton <A
e Threads also allow for algorithmic » Choice of block size to wf ¢ = = -
overlap enhance performance i
» Dependencies tracked on each node vialevel-3 BLAS --
using a scoreboard. Threads execute operations ™ Py o\ =
after all dependencies are satisfied *Block columns receive ™| = -4 %.a& “Thanks 0 the ANAG group at LBL
« Memory-constrained lookahead with updates from earlier ™ i » Warm-up for fully adaptive code
deadlock avoidance allows for flexible block columns « Mach 2 wave in a 2-D periodic
execution schedule » After all updates are received a block chamber with a dense fluid in the
column Is factorized shape of the letters: UP C
_— e Code written and tuning underway

/\

reococooroc|)

UNIFIED PARALLEL C

BERKELEY LAB © 2006, Lawrence Berkeley National Laboratory

	Slide Number 1

