Collective Communication
in PGAS Languages

.i
b
vé
g

Collective Communication:
* An operation called by all processes together to perform
globally coordinated communication

— May involve a modest amount of computation, e.g. to
combine values as they are communicate

— Can be extended to teams (or communicators) in which
they operate on a predefined subset of the processes

Open Research Questions:

* How does global address space impact design of the
collective interface?

« What about the one-sided communication model?
* How do these features affect the synchronization model?

« What is the potential for non-blocking collectives?

Advantages to each approach
Thread Centric Data Centric

 Cost of team construction * Collectives focus on operating
exposed to programmer on shared data rather than

» Runtime system can spend more | threads
time to potentially build better * Programmer does not need to
infrastructure for collectives worry about potentially complex

« Teams can be explicitly reused | l0gic to constructing and using a
« Simpler transition for MPI team |
programmers * Opens up a much richer
collective interface

— ex: exchange data from even
processors into odd
processors

Teams:
- Many applications require collectives to be performed
across teams (i.e. subsets) of the processors
 Currently no interface in UPC
* How do we construct these teams?

— Thread-Centric: Programmer explicitly specifies the
threads that take part in the collective through a
language level team construction API

— Data-Centric: Programmer only specifies the data
for the collective. Runtime system then figures out
where the data resides and performs the collective

Ex: Broadcast A into even slots and B into odd slots of dst
Thread Centric

Application Examples w/ Data Centric
Collectives on BG/L

Example 1: 3D FFT

* NX X NY x NZ rectangular
domain

* 2D Processor decomposition
* Requires two exchanges
— Each processor is part of

/*allocate array*/

[1] double dst [THREADS*64];
shared [64] double *temp dst;
shared double A, B;

upc team t odd team,even team;

shared

—A— Theoretical Peak (No Communication)
—7— Analytical Model :
—+— Measured Performance

even team = /* logic to construct team of all even threads*/

odd team = /*logic to construct team of all odd threads*/ 1o

/* recast into a fully blocked array*/

temp dst = (shared [64] double*) dst;

/*broadcast only into the slots of the array specified by the team
argument*/

upc_ team broadcast (temp dst, A, sizeof (double)*64, even team);

GFlops

two teams

— Each exchange happens
over different teams

« Bandwidth limited problem
* Analytic model shows

10°}

upc_ team broadcast (temp dst, B, sizeof (double) *64, odd_Eeam); 10'

performance limits due to
network performance

« Can express any long 1D FFT
asa3D FFT

—A— Theoretical Peak (No Communication)
—+— Measured Performance :

256 512 1024 2048 4096 8192 16384
Number of threads

128

Data Centric 2o

/*allocate array*/
shared [1] double dst [THREADS*64];
shared double A, B;

Example 2: Dense
Cholesky Factorization

» Uses standard
checkerboard layout for
distributing the matrix

 Column broadcasts for 2 |
rank-1 update implemented £ "“|
using data-centric collectives

« UPC implementation takes

10"

/* let underlying runtime system take care of figuring out where the
data is mapped*/

upc stride broadcast (dst<0:2:63>, A, sizeof (double)) ;
upc_ stride broadcast (dst<l:2:63>, B, sizeof (double));

From “Performance without Pain = Productivity: Data Layout and Collective

Communication in UPC” by Rajesh Nishtala, George Almasi, and Calin Cascaval, 25 lines
PPoPP 2008 (to appear) U ESSL f il )
. . . . * USES or seria 10°
Rajesh Nishtala, George Almasi, and Calin Cascaval computation

i i i i
512 1024 2048 4096 8192

Number of threads

128 256

IBM Research o

Potential for Non-Blocking Collectives: Synchronization Modes:

* Our previous work has shown that nonblocking point-to-point « One-sided semantics in PGAS languages allow remote data
communication has large performance benefits to be modified before collective is done

* What about nonblocking collectives?
x0  x1 X2

* There is no way of knowing whether the collective is

Example: Sparse Matrix Vector complete on a remote thread without querying it

Multiplication

NxN Matrix distributed across 2D
processor grid

Each processor needs final value of y

* Adding a full barrier for collective over-synchronizes the

A02
problem.

AO0 AO01

* No need to over synchronize a collective if the data is not

A10 A11 A12 J . :
for its row of processors needed in the current barrier phase
Observation o
Ml A20 A21 A22 Why wait to finish SPMV on all * UPC exposes the looser synchronization to the
rows? programmer through a rich set of synchronization modes

Can perform all-reduce after k
rows are done

SPMV Overlap Potential
(NAS CG Class C 150k x 150k)
Opteron/VAPI/16

* Aggregate synchronization by using one barrier to
synchronize all the collectives

l Reduce Wait (line 6) = - . .
“ e i i 4 Algorithm: » Looser Synchronization has large performance advantages
=S (ine 3 1. Let segs = N/k
2 For i=Q:segs, | Performance Adzlfgtlzsaftszc:‘fol::lzzzlt')Synchronization
—— 3. Y[(i)"segs,(i+1)*segs) = SPMV 180

B UPC Loose Synch
M MPI
B UPC Strict Synch

on rows [(i)*segs,(i+1)*segs)
4. Inject Allreduce of k doubles
5. End For
6. Wait for every Allreduce to finish

Time (us)

Time (ms)
= = N N w W
o u o u o u o u
Il Il Il Il

Overlap Granularity (k)

Rajesh Nishtala, Paul Hargrove,
Dan Bonachea, and Kathy Yelick
Berkeley UPC

>

f(reeeere |w

BERKELEY LAB

SGI Altix/16

Itanium2/GM/16

G5/VAPI/256 Opteron/VAPI/64 CrayXT3/128
Processor Type/Network/Processor Count

CrayXT4/128




