
Open Research Questions:

Collective Communication 
in PGAS Languages

• How does global address space impact design of the
collective interface?
• What about the one-sided communication model?
• How do these features affect the synchronization model?
• What is the potential for non-blocking collectives?

Collective Communication:
• An operation called by all processes together to perform
globally coordinated communication

– May involve a modest amount of computation, e.g. to
combine values as they are communicate
– Can be extended to teams (or communicators) in which
they operate on a predefined subset of the processes

 Teams:
• Many applications require collectives to be performed
across teams (i.e. subsets) of the processors
• Currently no interface in UPC
• How do we construct these teams?

– Thread-Centric: Programmer explicitly specifies the
threads that take part in the collective through a
language level team construction API
– Data-Centric: Programmer only specifies the data
for the collective. Runtime system then figures out
where the data resides and performs the collective

Data Centric

/*allocate array*/

shared [1] double dst[THREADS*64];

shared [64] double *temp_dst;

shared double A,B;

upc_team_t odd_team,even_team;

even_team = /* logic to construct team of all even threads*/

odd_team = /*logic to construct team of all odd threads*/

/* recast into a fully blocked array*/

temp_dst = (shared [64] double*) dst;

/*broadcast only into the slots of the array specified by the team
argument*/

upc_team_broadcast(temp_dst, A, sizeof(double)*64, even_team);
upc_team_broadcast(temp_dst, B, sizeof(double)*64, odd_team);

Ex: Broadcast A into even slots and B into odd slots of dst

/*allocate array*/

shared [1] double dst[THREADS*64];

shared double A,B;

/* let underlying runtime system take care of figuring out where the
data is mapped*/

upc_stride_broadcast(dst<0:2:63>, A,   sizeof(double));

upc_stride_broadcast(dst<1:2:63>, B, sizeof(double));

Thread Centric

• Collectives focus on operating
on shared data rather than
threads
•  Programmer does not need to
worry about potentially complex
logic to constructing and using a
team
• Opens up a much richer
collective interface

– ex: exchange data from even
processors into odd
processors

• Cost of team construction
exposed to programmer
• Runtime system can spend more
time to potentially build better
infrastructure for collectives
• Teams can be explicitly reused
• Simpler transition for MPI
programmers

Data CentricThread Centric
Advantages to each approach

 Application Examples w/ Data Centric
Collectives on BG/L

Example 1: 3D FFT
• NX x NY x NZ rectangular
domain
• 2D Processor decomposition
• Requires two exchanges

– Each processor is part of
two teams
– Each exchange happens
over different teams

• Bandwidth limited problem
• Analytic model shows
performance limits due to
network performance
• Can express any long 1D FFT
as a 3D FFT

From “Performance without Pain = Productivity: Data Layout and Collective
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Example 2: Dense
Cholesky Factorization
• Uses standard
checkerboard layout for
distributing the matrix
• Column broadcasts for
rank-1 update implemented
using data-centric collectives
• UPC implementation takes
25 lines
• Uses ESSL for serial
computation

Potential for Non-Blocking Collectives:

Example: Sparse Matrix Vector
Multiplication

NxN Matrix distributed across 2D
processor grid

Each processor needs final value of y
for its row of processors

Observation
Why wait to finish SPMV on all

rows?
Can perform all-reduce after k

rows are done
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Synchronization Modes:
• Our previous work has shown that nonblocking point-to-point
communication has large performance benefits
• What about nonblocking collectives?

• One-sided semantics in PGAS languages allow remote data
to be modified before collective is done

• There is no way of knowing whether the collective is
complete on a remote thread without querying it
• Adding a full barrier for collective over-synchronizes the
problem.

• No need to over synchronize a collective if the data is not
needed in the current barrier phase

• UPC exposes the looser synchronization to the
programmer through a rich set of synchronization modes
• Aggregate synchronization by using one barrier to
synchronize all the collectives

• Looser Synchronization has large performance advantagesAlgorithm:
1. Let segs = N/k
2. For i=0:segs,

3. Y[(i)*segs,(i+1)*segs) = SPMV
on rows [(i)*segs,(i+1)*segs)

4. Inject Allreduce of k doubles
5. End For
6. Wait for every Allreduce to finish
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