
Open Research Questions:

Collective Communication
in PGAS Languages

• How does global address space impact design of the
collective interface?
• What about the one-sided communication model?
• How do these features affect the synchronization model?
• What is the potential for non-blocking collectives?

Collective Communication:
• An operation called by all processes together to perform
globally coordinated communication

– May involve a modest amount of computation, e.g. to
combine values as they are communicate
– Can be extended to teams (or communicators) in which
they operate on a predefined subset of the processes

 Teams:
• Many applications require collectives to be performed
across teams (i.e. subsets) of the processors
• Currently no interface in UPC
• How do we construct these teams?

– Thread-Centric: Programmer explicitly specifies the
threads that take part in the collective through a
language level team construction API
– Data-Centric: Programmer only specifies the data
for the collective. Runtime system then figures out
where the data resides and performs the collective

Data Centric

/*allocate array*/

shared [1] double dst[THREADS*64];

shared [64] double *temp_dst;

shared double A,B;

upc_team_t odd_team,even_team;

even_team = /* logic to construct team of all even threads*/

odd_team = /*logic to construct team of all odd threads*/

/* recast into a fully blocked array*/

temp_dst = (shared [64] double*) dst;

/*broadcast only into the slots of the array specified by the team
argument*/

upc_team_broadcast(temp_dst, A, sizeof(double)*64, even_team);
upc_team_broadcast(temp_dst, B, sizeof(double)*64, odd_team);

Ex: Broadcast A into even slots and B into odd slots of dst

/*allocate array*/

shared [1] double dst[THREADS*64];

shared double A,B;

/* let underlying runtime system take care of figuring out where the
data is mapped*/

upc_stride_broadcast(dst<0:2:63>, A, sizeof(double));

upc_stride_broadcast(dst<1:2:63>, B, sizeof(double));

Thread Centric

• Collectives focus on operating
on shared data rather than
threads
• Programmer does not need to
worry about potentially complex
logic to constructing and using a
team
• Opens up a much richer
collective interface

– ex: exchange data from even
processors into odd
processors

• Cost of team construction
exposed to programmer
• Runtime system can spend more
time to potentially build better
infrastructure for collectives
• Teams can be explicitly reused
• Simpler transition for MPI
programmers

Data CentricThread Centric
Advantages to each approach

 Application Examples w/ Data Centric
Collectives on BG/L

Example 1: 3D FFT
• NX x NY x NZ rectangular
domain
• 2D Processor decomposition
• Requires two exchanges

– Each processor is part of
two teams
– Each exchange happens
over different teams

• Bandwidth limited problem
• Analytic model shows
performance limits due to
network performance
• Can express any long 1D FFT
as a 3D FFT

From “Performance without Pain = Productivity: Data Layout and Collective
Communication in UPC” by Rajesh Nishtala, George Almasi, and Calin Cascaval,

PPoPP 2008 (to appear)

Example 2: Dense
Cholesky Factorization
• Uses standard
checkerboard layout for
distributing the matrix
• Column broadcasts for
rank-1 update implemented
using data-centric collectives
• UPC implementation takes
25 lines
• Uses ESSL for serial
computation

Potential for Non-Blocking Collectives:

Example: Sparse Matrix Vector
Multiplication

NxN Matrix distributed across 2D
processor grid

Each processor needs final value of y
for its row of processors

Observation
Why wait to finish SPMV on all

rows?
Can perform all-reduce after k

rows are done

y
0

x0 x1 x2

y
1

y
2

A00 A01 A02

A10 A11 A12

A20 A21 A22

Synchronization Modes:
• Our previous work has shown that nonblocking point-to-point
communication has large performance benefits
• What about nonblocking collectives?

• One-sided semantics in PGAS languages allow remote data
to be modified before collective is done

• There is no way of knowing whether the collective is
complete on a remote thread without querying it
• Adding a full barrier for collective over-synchronizes the
problem.

• No need to over synchronize a collective if the data is not
needed in the current barrier phase

• UPC exposes the looser synchronization to the
programmer through a rich set of synchronization modes
• Aggregate synchronization by using one barrier to
synchronize all the collectives

• Looser Synchronization has large performance advantagesAlgorithm:
1. Let segs = N/k
2. For i=0:segs,

3. Y[(i)*segs,(i+1)*segs) = SPMV
on rows [(i)*segs,(i+1)*segs)

4. Inject Allreduce of k doubles
5. End For
6. Wait for every Allreduce to finish

Rajesh Nishtala, Paul Hargrove,
Dan Bonachea, and Kathy Yelick

Berkeley UPC

Rajesh Nishtala, George Almasi, and Calin Cascaval
IBM Research

