
Berkeley UPC

© 2008, Lawrence Berkeley National Laboratory

http://upc.lbl.gov

 A portable and high-performance UPC
implementation, compliant with UPC 1.2 spec

 Features:
 High performance UPC Collectives
 Extensions for performance and programmability

  Non-blocking memcpy functions
  Semaphores and signaling put
  Value-based collectives
  Atomic memory operations
  Hierarchical layout query

 Compiler and runtime optimizations for
application scalability

 Open source software (Windows/Mac/UNIX),
installation DVD available

Overview

Portable Design

 Layered design, platform-independent code gen
 Supports wide range of SMPs, clusters and MPPs

  x86, Itanium, Opteron, Athlon, Alpha, PowerPC, MIPS,
PA-RISC, SPARC, T3E, X1, SX-6, XT3, Blue Gene, …

  Linux, FreeBSD, NetBSD, Tru64, AIX, IRIX, HPUX, Solaris,
MS Windows, Mac OS X, Unicos, SuperUX, …

  Pthreads, Unix SysV, Myrinet, Quadrics Elan 3/4, InfiniBand,
IBM LAPI, Dolphin SCI, MPI, Ethernet, Cray X1 / SGI Altix
shmem, Cray XT Portals, IBM BG/P DCMF (new: see poster)

UPC-to-C Translator

BUPC Runtime + GASNet
 Well-documented runtime interface, multiple

UPC compilers (Berkeley UPC and Intrepid
GCC/UPC)

 Debugging and tracing support
  Performance Instrumentation Support (GASP)
  Supports Parallel Performance Wizard (PPW)
  Detailed communication tracing support
  Etnus TotalView debugger support

  Interoperability with other programming env:
  UPC calls to/from C, C++, Fortran, MPI

 Berkeley GASNet used for communication:
  Performance from inline functions, macros, and

network-specific implementations
 Optimized Collective ops
 High-performance communication

  Consistently matches or outperforms MPI
  One-sided, lightweight semantics

 Source-to-source translator, based on Open64
 Enhances programmer productivity through

static and dynamic optimizations: compiler,
runtime, communication libraries

(u
p

is
 g

oo
d)

(u
p

is
 g

oo
d)

(d

ow
n

is
 g

oo
d)

Performance
 Portability:

 System, Scale,
 Load

(d
ow

n
is

 g
oo

d)

 Compile time message vectorization and
strip-mining
  Runtime Analysis:communication
instantiated at runtime based on system
specific performance models
 Performance models designed to take
system scale and load into account

Communication dynamically
instantiated using either Put/Get
or VIS calls

Overall improved application
scalability and programmer
productivity

  For distributed memory or heterogeneous
architectures one needs:
  Locality and Load Balance
  Remote synchronization for

dependencies
  Latency Tolerance

some edges omitted

Other results:
Itanium 2/Elan 4.1 – 2.25 TFlop/s,
78.5% of peak on 512p
1p Itanium 2 1.5 GHz – 91.8% of peak
1p Opteron 2.2GHz – 81.9% of peak

Case Study - Linpack
 2d block cyclic decomposition as in ScaLAPACK
 Cooperative multi-threading to mask dependences
 Non-blocking (remote get) transfers to mask latency
 Memory-constrained lookahead compared to none in ScaLAPACK, fixed
parameter in MPI/HPL
 Application-level scheduling to prioritize critical path

Multithreading
 for Latency

 Hiding

Case Study – Cell BE (Sony PS3)
  Disjoint hardware hierarchies with different degrees of parallelism
  Bioinformatics applications: PBPI and RAXML
  Oversubscription (multi-threading)

masks dependences and increases utilization
  Cooperative scheduling to minimize SPE idle time
  Asynchronous PPE-SPE interaction
  Compares performance for 4 algorithms

•  MBOX: SPE Mailboxes from Cell SDK
•  YNR: “Yield if Not Ready”
•  SLED: “SLack-minimizer Event-Driven”
•  UPC Shared Mem: work stealing in UPC

  Work-stealing in UPC yields 70% decrease in SPE idle time

(u
p

is
 g

oo
d)

(d
ow

n
is

 g
oo

d)

