
0

1000

2000

3000

4000

0 100 200 300 400

G
Fl

op
s

Cores

Matrix-Multiply Weak Scaling on Cray XT4

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

Optimizing Collective Communication 
for Petascale Supercomputers

http://upc.lbl.gov
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Collective communication 
 Cooperative data-movement beyond one-to-one 

communication
 Common building blocks for many applications 
 Key bottleneck of performance scalability

GASNet
 Portable high-performance communication primitives 
 Used to implement partitioned global address space 

languages: e.g., UPC, Titanium, Co-array FORTRAN, and 
Chapel
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UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution 
 Process/thread 

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get 
 Collection of well-

known algorithms
Communication topology 
 Tree type 
 Tree fan-out

Implementation-specific 
parameters 
 Pipelining depth
 Dissemination radix

Teams
 Thread-centric: Programmer explicitly specifies the 

threads that take part in the collective through a language 
level team construction API. 

 Data-centric: Programmer only specifies the data for the 
collective. Runtime system then figures out where the 
data resides and performs the collective.

Synchronization modes
 Loose: Data movement can start and as soon as first 

thread enters collective and continue until last thread 
leaves the collective.

 Middle: Data movement into and out  local memory can 
occur only when the data-owner thread is in the 
collective  operation.

 Strict: Data movement can start only after all threads 
have entered the collective and must finish before any 
thread leaves the collective. 

Optimizations
 Non-blocking collective operations that facilitate 

overlapping communication and computation 
 Network-specific optimizations for leveraging hardware 

features
 Automated performance tuning for accommodating 

different application characteristics on multiple platforms

Shared-Memory 
Collectives

High Productivity
 Portable performance from multi-core PCs to 

petascale supercomputers
 Compact and clean UPC code

Scalable Performance
 3-D FFT (communication intensive)

• Weak scaling: 38% over MPI (16K cores) 
• strong scaling: 20% over MPI (16K cores)

 Numerical linear algebra: highly scalable 
performance up to 2X MPI/PBLAS

3-D FFT Performance  on Cray XT4 (1024 cores) 

Offline tuning
 Optimize for platform 

common characteristics

 Minimize runtime tuning 
overhead

Online tuning
 Optimize for application 

runtime characteristics

 Refine offline tuning results
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UPC Slabs

UPC Packed Slabs

MPI Packed Slabs

Broadcast on Cray XT4 (1024 threads) GatherAll on Cray XT5 (1536 threads)

Exchange on SUN Constellation (256 threads)Gather on Cray XT4 (1024 threads)
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ConclusionOrganization of GASNet Collectives

Micro-benchmarksExample Communication Topologies

Introduction Performance Auto-tuning


	Slide Number 1

