Efficient Utilization of Multicore Machines

| !
"‘f‘j T LB e R i 3T L S A ¥ et
1\ &
“1 ¥
B
.
¥ 2
\E B ~ ™ e
\

I

http://upc.lbl.gov

Overview

e Future large scale systems
e Large number of cores per node
 Heterogeneous: Cell, GPU, Larrabee, Nehalem
« Asymmetric: Nehalem, GPU, torus network

« Efficient utilization requires:
 Multiple levels of parallelism
e Hybrid execution
« Efficient intra-node communication
« Adaptive scheduling

e Multiple projects:

 OS and parallel runtime interface development and
co-design: load balancing, cooperative scheduling,
performance introspection

« Efficient intra-node communication for PGAS
programming languages: collective operations,
mapping of language threads to the OS-level
execution contexts

Speed Balancing

» Parallelism leads to load imbalance
« SPMD requires OS or application-level techniques
 Dynamic parallelism requires OS or runtime support

e Speed balancing: user level balancer for Linux
e Speed = (t_user +t_system) /t real
o All threads run at the same speed
« Continuously migrate tasks between slow and fast cores
« One monitor thread per core
« Scalable, distributed soft state algorithm

 Validated on UMA (Intel Tigerton), NUMA (AMD
Barcelona) for UPC, MPIl and OpenMP workloads
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SPEED - speed scheduler, DWRR — deficit weighted round robin sched., PINNED — each task

bound to a single core, SLEEP — threads sleep in barrier, YIELD — threads yield in barrier, LOAD —

default Linux load balancer.

Autotuned Multicore Collectives

e Open questions:
» Collective interface design for global address space
» Collective interface design for one-sided communication

e Strict Synchronization

« Data movement can start only after all the threads arrive
at the collective and must be done before the first thread
leaves the collective

« Usually implies a barrier before and after the collective

 Easy to understand but often over synchronizes the
operation

 Loose Synchronization

« Data movement can start after any thread enters the
collective and can continue until last thread leaves

* Allows user to aggregate synchronization costs across
many operations

 Enables better use of memory system
 More difficult to program

« “Traditional pthread barriers” yield poor performance
* Performance penalty for picking bad algorithm is large

e Loose synchronization yields performance
Improvements, enables pipelining
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Process — Shared Memory Overview

e Project Goals:

e Improve performance of UPC on multi-core
shared memory machines

* Improve interoperability
(Hybrid Execution: MPI, OMP, UPC)

Hybrid execution on
a cluster of workstations

MPI

e Qur work:

e Investigate mapping of the
Language threads to the OS threads

« We implemented Process - Shared Memory (PSHM) execution
In UPC (available in the current release)
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Mapping:
I 1-1

any process can
run on any core

HARDWARE

The PGAS execution model is amenable to two-level scheduling

Pthreads-Process Runtime Comparison

* Previous BUPC releases used pthreads for
shared memory communication within a single SMP node

 Many libraries are not thread safe (FFTW, C I/O functions on
certain OSs) — interoperability problems

 Pthreads share the entire address space, while processes
share only certain memory regions

 Pthreads — PSHM behavior differences
 Pthreads share network connections (e.g. InfiniBand) when
hardware allows 1 connection per process
* Different context-switch overhead for thread/process
 Any thread can serve Active Messages on behalf of any
other thread, since they share the address space

Pthreads-Process Performance

Microbenchmarks and NPB experiments are conducted on 2-node Intel Tigerton
(4 socket, 4 core) cluster. Machines are directly connected via InfiniBand.
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Performance improvement of UPC-PSHM over UPC-Ptrheads with Non-Blocking
communication microbenchmarks. InfiniBand driver allows one send queue per
process, which causes contention in the Pthreaded case.
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NAS Parallel Benchmarks (Class B): Performance improvement of UPC-PSHM over
UPC-Ptrheads on various number of cores. 4,8,16 — core experiments use 1 node. 32 —
core experiments use 2 nodes.
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Comparison of various communication strategies
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