
The PGAS execution model is amenable to two-level scheduling

Efficient Utilization of Multicore Machines

 2009, Lawrence Berkeley National Laboratory

http://upc.lbl.gov

• Project Goals:
• Improve performance of UPC on multi-core

shared memory machines
• Improve interoperability

(Hybrid Execution: MPI, OMP, UPC)
NODE1 NODE2 NODE3 NODE4

MPI

Language Threads

Processes/Pthreads

HARDWARE

• Our work:
• Investigate mapping of the

Language threads to the OS threads
• We implemented Process - Shared Memory (PSHM) execution

in UPC (available in the current release)

Hybrid execution on
a cluster of workstations

• Previous BUPC releases used pthreads for
shared memory communication within a single SMP node

• Many libraries are not thread safe (FFTW, C I/O functions on
certain OSs) – interoperability problems

• Pthreads share the entire address space, while processes
share only certain memory regions

• Pthreads – PSHM behavior differences
• Pthreads share network connections (e.g. InfiniBand) when

hardware allows 1 connection per process
• Different context-switch overhead for thread/process
• Any thread can serve Active Messages on behalf of any

other thread, since they share the address space

Performance improvement of UPC-PSHM over UPC-Ptrheads with Non-Blocking
communication microbenchmarks. InfiniBand driver allows one send queue per
process, which causes contention in the Pthreaded case.

Microbenchmarks and NPB experiments are conducted on 2-node Intel Tigerton
(4 socket, 4 core) cluster. Machines are directly connected via InfiniBand.

Data Transfer Size (in bytes)

N
um

. o
f o

ut
st

an
di

ng
re

qu
es

ts

Process – Shared Memory Overview

Pthreads-Process Runtime Comparison

Pthreads-Process Performance

NAS Parallel Benchmarks (Class B): Performance improvement of UPC-PSHM over
UPC-Ptrheads on various number of cores. 4,8,16 – core experiments use 1 node. 32 –
core experiments use 2 nodes.

-5%

0%

5%

10%

15%

20%

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 4 8 16

CG EP IS MG LU BT SP

67
%

• Future large scale systems
• Large number of cores per node
• Heterogeneous: Cell, GPU, Larrabee, Nehalem
• Asymmetric: Nehalem, GPU, torus network

• Efficient utilization requires:
• Multiple levels of parallelism
• Hybrid execution
• Efficient intra-node communication
• Adaptive scheduling

• Multiple projects:
• OS and parallel runtime interface development and

co-design: load balancing, cooperative scheduling,
performance introspection

• Efficient intra-node communication for PGAS
programming languages: collective operations,
mapping of language threads to the OS-level
execution contexts

Overview

Speed Balancing
• Parallelism leads to load imbalance

• SPMD requires OS or application-level techniques
• Dynamic parallelism requires OS or runtime support

• Speed balancing: user level balancer for Linux
• Speed = (t_user + t_system) / t_real
• All threads run at the same speed
• Continuously migrate tasks between slow and fast cores
• One monitor thread per core
• Scalable, distributed soft state algorithm

• Validated on UMA (Intel Tigerton), NUMA (AMD
Barcelona) for UPC, MPI and OpenMP workloads

SPEED – speed scheduler, DWRR – deficit weighted round robin sched., PINNED – each task
bound to a single core, SLEEP – threads sleep in barrier, YIELD – threads yield in barrier, LOAD –
default Linux load balancer.

Autotuned Multicore Collectives
• Open questions:

• Collective interface design for global address space
• Collective interface design for one-sided communication

• Strict Synchronization
• Data movement can start only after all the threads arrive

at the collective and must be done before the first thread
leaves the collective

• Usually implies a barrier before and after the collective
• Easy to understand but often over synchronizes the

operation

• Loose Synchronization
• Data movement can start after any thread enters the

collective and can continue until last thread leaves
• Allows user to aggregate synchronization costs across

many operations
• Enables better use of memory system
• More difficult to program

• “Traditional pthread barriers” yield poor performance
• Performance penalty for picking bad algorithm is large
• Loose synchronization yields performance

improvements, enables pipelining

Comparison of various communication strategies

1-1

any process can
run on any core

Mapping:

	Slide Number 1

