Efficient Utilization of Multicore Machines

| !
"‘f‘j T LB e R i 3T L S A ¥ et
1\ &
“1 ¥
B
.
¥ 2
\E B ~ ™ e
\

I

http://upc.lbl.gov

Overview

e Future large scale systems
e Large number of cores per node
 Heterogeneous: Cell, GPU, Larrabee, Nehalem
« Asymmetric: Nehalem, GPU, torus network

« Efficient utilization requires:
 Multiple levels of parallelism
e Hybrid execution
« Efficient intra-node communication
« Adaptive scheduling

e Multiple projects:

 OS and parallel runtime interface development and
co-design: load balancing, cooperative scheduling,
performance introspection

« Efficient intra-node communication for PGAS
programming languages: collective operations,
mapping of language threads to the OS-level
execution contexts

Speed Balancing

» Parallelism leads to load imbalance
« SPMD requires OS or application-level techniques
 Dynamic parallelism requires OS or runtime support

e Speed balancing: user level balancer for Linux
e Speed = (t_user +t_system) /t real
o All threads run at the same speed
« Continuously migrate tasks between slow and fast cores
« One monitor thread per core
« Scalable, distributed soft state algorithm

 Validated on UMA (Intel Tigerton), NUMA (AMD
Barcelona) for UPC, MPIl and OpenMP workloads

18
15 +— =—#—O0ne-per-core 16 =®—0ne-per-core UPC-Barcelona
~#— SPEED-SLEEP
13 |~ —@—SPEED 14 -
—#—SPEED-YIELD
11 1~ —4—DWRR 012
o 2 +=>6=|OAD-SLEEP
] - 10 -
R FreeBSD 3 ~—LOAD-YIELD
Q a 8
&7 iz
=@—PINNED 6
5 4
a 2
0
b G i S s S S S S S S S S N N i B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

11 12 13 14 15 16 Number of Cores

1 2 4 7 1
3 5 6 Numb%r o? Cores

SPEED - speed scheduler, DWRR — deficit weighted round robin sched., PINNED — each task

bound to a single core, SLEEP — threads sleep in barrier, YIELD — threads yield in barrier, LOAD —

default Linux load balancer.

Autotuned Multicore Collectives

e Open questions:
» Collective interface design for global address space
» Collective interface design for one-sided communication

e Strict Synchronization

« Data movement can start only after all the threads arrive
at the collective and must be done before the first thread
leaves the collective

« Usually implies a barrier before and after the collective

 Easy to understand but often over synchronizes the
operation

 Loose Synchronization

« Data movement can start after any thread enters the
collective and can continue until last thread leaves

* Allows user to aggregate synchronization costs across
many operations

 Enables better use of memory system
 More difficult to program

« “Traditional pthread barriers” yield poor performance
* Performance penalty for picking bad algorithm is large

e Loose synchronization yields performance
Improvements, enables pipelining

N

f(erreer ‘m

© 2009, Lawrence Berkeley National Laboratory

Process — Shared Memory Overview

e Project Goals:

e Improve performance of UPC on multi-core
shared memory machines

* Improve interoperability
(Hybrid Execution: MPI, OMP, UPC)

Hybrid execution on
a cluster of workstations

MPI

e Qur work:

e Investigate mapping of the
Language threads to the OS threads

« We implemented Process - Shared Memory (PSHM) execution
In UPC (available in the current release)

——

N

Mapping:
I 1-1

any process can
run on any core

HARDWARE

The PGAS execution model is amenable to two-level scheduling

Pthreads-Process Runtime Comparison

* Previous BUPC releases used pthreads for
shared memory communication within a single SMP node

 Many libraries are not thread safe (FFTW, C I/O functions on
certain OSs) — interoperability problems

 Pthreads share the entire address space, while processes
share only certain memory regions

 Pthreads — PSHM behavior differences
 Pthreads share network connections (e.g. InfiniBand) when
hardware allows 1 connection per process
* Different context-switch overhead for thread/process
 Any thread can serve Active Messages on behalf of any
other thread, since they share the address space

Pthreads-Process Performance

Microbenchmarks and NPB experiments are conducted on 2-node Intel Tigerton
(4 socket, 4 core) cluster. Machines are directly connected via InfiniBand.

10

1024 164 | 1.70
> 512 1.70
"g 256 1.69
8 0128 1.70
27
5 O 64 1.73
o 3
s g 32 1.79 175 | 1.76 | 1.71 1.72 | 1.67 1.81
= 16 1.92 1.99 1.67 | 1.96 | 2.08 1.94 194 | 1.79 | 165 | 169 | 1.98
= 8 182 | 253 | 243 | 246 | 277 | 275 | 249 | 224 | 232 | 203 | 208 | 1.76
4 3.01 3.07 | 3.6 220 | 205 | 1.75 | 1.62
2 2.15 .92 | 3.04 | 199 | 1.77 | 1.77 ;
8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Data Transfer Size (in bytes)

Performance improvement of UPC-PSHM over UPC-Ptrheads with Non-Blocking
communication microbenchmarks. InfiniBand driver allows one send queue per
process, which causes contention in the Pthreaded case.

20%

15%

10%

4 8 16 32 4 8 16 32 4 8 16 32 I4—]81632 4 8 16 32 4 8 16 4 8 16
CG EP IS MG LU BT SP

-5%

NAS Parallel Benchmarks (Class B): Performance improvement of UPC-PSHM over
UPC-Ptrheads on various number of cores. 4,8,16 — core experiments use 1 node. 32 —
core experiments use 2 nodes.

e — Strict Flat P S T P O e U PO N S

108 —F— Strict Tree | e -
i Loose Flat | il e e g
Loose Tree| =]

-
0
0
[
\
)
|

-4
0
iz
T
I
\
|

Reduction Latency (nanoseconds)
N

-
0
T

>
- Ho+
|

L I I I 1 I 1 1 1 1 1 L
= a s 16 32 &4 128 256 512 1024 2048 4096 8192
Vector Size (Double Precision Words)

Comparison of various communication strategies

	Slide Number 1

