
Problems with using MPI 1.1 and 2.0 
as compilation targets for 

parallel language implementations

Dan Bonachea & Jason Duell
U. C. Berkeley / LBNL

http://upc.lbl.gov



Overview
• We are implementing distributed parallel languages 
• MPI is the dominant HPC communication paradigm today 

for distributed systems
– Has been touted as an "assembly language for parallel 

processing" [Gropp, 2001]
– Would like to use MPI as a portable compilation target for 

parallel compilers - seems like a natural choice at first glance
• MPI 1.1 (matched send/recv)

– Two-sided paradigm does not efficiently support one-sided access
– Fails to expose the high-performance features of modern SAN's 

(eg. one-sided RDMA) in a useful way
– Much more efficient to target the underlying vendor network API

• MPI 2.0 RMA (Remote Memory Access)
– Overly restrictive semantics governing memory access patterns 

prevent any reasonable implementation strategies



Background - GAS Languages
• Global Address Space (GAS) languages

– UPC, Titanium, Co-Array Fortran
• Shared memory abstraction with explicit data layout

– Threads can implicitly access remote shared data with simple 
language-level operations (assign/deref)

– Programmer has explicit knowledge and control over data locality
• Relevant features of GAS languages

– Non-collective dynamic allocation of shared memory
• Most or all of the data is potentially shared (think GB's / node)

– One-sided communication pattern
• Pattern may be data-dependent, not statically predictable (irregular apps)

– May access local shared memory via "local" pointers
• Statically indistinguishable from non-shared (private) memory access

– Incremental development model
• Start with naïve app written in shared memory style and tune the bottlenecks
• Many GAS apps tend to be sensitive to network latencies, at least initially



Communication Needs of GAS Languages
• One-sided communication (puts, gets, etc)

– Only initiator is involved - operations proceed independent of any 
explicit actions by the target (e.g. no calling recv or pin)

– Can be simulated using two-sided, but must be transparent to client
• Low round-trip latency for small (~8 byte) messages
• Non-blocking remote memory access

– allows overlapping to hide network latencies
– need low CPU overhead and network gap to be effective

• Support arbitrary, unpredictable access patterns to shared 
memory
– concurrent access to same region of memory by different remote 

nodes and the local node (possibly via "local" pointers)



Implementing GAS over MPI 1.1
• MPI 1.1 

– the most widely-implemented HPC communications interface 
available today

– portable and highly tuned by vendors (at least for expected 
common usage cases)

– All point-to-point messages require strictly matching send/recv 
operations (two-sided messaging)

• Simulating one-sided messaging over MPI 1.1
– AMMPI - Berkeley Active Messages over MPI 1.1
– Uses non-blocking sends & recvs to avoid deadlock
– Periodic polling within communication ops and library blocking 

calls - ensures progress and provides the illusion of one-sided
– Successfully used to run UPC and Titanium on dozens of modern 

supercomputers and clusters - portability allows quick prototyping



Network Latency and Overhead 
Comparison for Popular SAN's



MPI 1.1 vs Vendor Network API
Application Performance Comparison

• GASNet - portable, high-performance communication layer 
designed as a compilation target for GAS languages
– common compilation target for both UPC and Titanium
– reference implementation over MPI 1.1 (AMMPI-based)
– direct implementation over many vendor network API's:

• IBM LAPI, Quadrics Elan, Myrinet GM, Infiniband vapi, Dolphin SCI, 
others on the way…

• http://www.cs.berkeley.edu/~bonachea/gasnet

• Applications: NAS parallel benchmarks (CG & MG)
– Standard benchmarks written in UPC by GWU
– Compiled using Berkeley UPC compiler
– Run over identical hardware and system software
– ONLY difference is GASNet backend: MPI 1.1 vs vendor API
– Also used HP/Compaq UPC compiler where avail. (elan-based)



Bulk-synchronous Apps on Quadrics AlphaServer

Apps on elan-based 
layer soundly beat apps 
on MPI-based layer -
better performance, 
better scaling

The only difference is 
the network API!

Results from elan-
based Compaq UPC 
compiler also shown 
for comparison

Machine: 
PSC Lemieux TSC



Apps on GM-based 
layer beat apps on MPI-
based layer by ~ 20%

The only difference is 
the network API!

Machine: 
NERSC Alvarez cluster

Bulk-synchronous Apps on P3-Myrinet 2000 cluster



NAS-MG on IBM SP-Power3

App on LAPI-based layer provides significantly better absolute 
performance and scaling than same app on MPI-based layer

The only difference is the network API!

Machine: NERSC seaborg SP



For comparison purposes
– A naïvely-written implementation of CG with fine-grained accesses (8 byte avg)
– All versions scale poorly due to naïve application algorithm
– Absolute performance: elan-based app is more than 4 times faster!
– Small messages reveal the high-latency and high-overhead of the MPI 1.1 layer
– App programmers have to work harder to get acceptable performance on MPI
– elan-based communication layer more suitable for supporting incremental 

application development and inherently fine-grained algorithms 

Fine-grained CG on Quadrics AlphaServer



MPI-RMA Overview
• Remote Memory Access (RMA) added in MPI 2.0

– Provides a "one-sided" communications interface
• MPI_Put, MPI_Get, MPI_Accumulate

– All RMA takes place on an abstract "window" 
• window represents a memory region made available for remote access
• Created using collective MPI_Win_create call

– All RMA happens within a synchronization "epoch"
• Two synchronization "modes" for RMA

– Active target - requires explicit cooperation by the target
• Not truly one-sided, therefore not useful for our purposes

– Passive target - only the initiator makes explicit calls
• MPI_Win_{lock,unlock} must surround RMA calls
• Conceptually enforce a shared (for reading) or exclusive (for updating) lock 

over the target window while the RMA is performed



MPI-RMA Problematic Semantic Restrictions
• Window creation is a collective operation

– all nodes must participate to expose new regions of shared memory

• Passive-target RMA only guaranteed to work on memory allocated 
using MPI_Alloc_mem

• Erroneous to have conflicting RMA put/get or local load/store to the 
same location in memory
– must separate conflicting accesses using epochs

• RMA on a given window may only access a single node's memory 
during a given access epoch

• Concurrency limits on access to window's memory
– window may not be concurrently accessed by remote RMA and local load/stores
– even to non-overlapping locations in the window
– Different windows may overlap in memory, but it's erroneous to have concurrent 

operations to overlapping windows

X Ywindow on P0

RMA_Put from P1 local store from P0
example of 
prohibited behavior:



Implications of MPI-RMA Semantics for GAS
• Window creation is a collective operation

– cannot use a window per shared object - because need non-collective, purely 
local, dynamic allocation of shared objects

– the only reasonable alternative is to coalesce many shared objects into a window

• Passive-target RMA only guaranteed to work on memory allocated 
using MPI_Alloc_mem
– may not work for statically-allocated data
– no guarantees about how much memory you can get
– likely to be restricted to a small amount of pinnable memory on some systems 

(useless for applications with GB's of potentially shared data per node)

• RMA on a given window may only access a single node's memory 
during a given access epoch
– Need a window per node to prevent serializing RMA's destined for different 

nodes
– No guarantees about how many windows can be created - likely to have 

scalability problems with larger jobs



Implications of MPI-RMA Semantics for GAS
• Erroneous to have conflicting RMA put/get or local load/store to the 

same location in memory 
– MPI could generate fatal errors or have other arbitrary behavior after accesses 

that may be benign race conditions (where GAS has well-defined semantics)
– Basically impossible to precisely detect all such race conditions at compile time, 

especially across different nodes
– Have to conservatively assume almost everything is a potential race, wrap each 

put in its own exclusive epoch and all gets in a shared epoch

• Concurrency limits on access to window's memory
– window may not be concurrently accessed by remote RMA and local 

load/stores, even to non-overlapping locations in the window
– Drastically reduces concurrency to objects in each window
– Especially bad if a window contains many objects
– In GAS languages, ANY local load/store operation could potentially touch 

shared memory - no way to know at compile time
– In general, would need to wrap EVERY local load/store operation with 

MPI_Win_{lock,unlock} to be safe. Read: super performance-killer



Conclusions
• MPI 1.1

– Can be used to simulate one-sided messaging for GAS 
implementation

– Performance hit imposed by this translation is substantial
• cost of simulating one-sided messaging over two-sided 

send/recv
• non-blocking MPI 1.1 typically has much higher latency and 

CPU overhead for small messages than underlying vendor 
layers

– Much better performance and scaling by using 
proprietary vendor-provided network APIs 
• Most of which provide natural and efficient one-sided 

operations, which are supported in modern HPC networking 
hardware (e.g. RDMA, SHMEM, etc.)

• Desperate need for a portable networking layer that exposes 
these hardware capabilities - our answer: GASNet



Conclusions
• MPI-RMA is inadequate as a compilation target

– Current semantics are too restrictive for viable use as an efficient 
compilation target for GAS languages
• Overly-strict synchronization rules for the "one-sided" API requires two-

sided cooperation in practice to prevent violating the semantics
• These usage restrictions are fundamental - parallel language compilers 

cannot efficiently target MPI-RMA without exposing the problematic 
restrictions at the source level - users unlikely to tolerate such restrictions

• MPI-RMA is not useful as an "assembly language for parallel processing"
• May still be useful to programmers who directly write for MPI-RMA and 

structure their application to obey the restrictions (conflicting evidence)
– The problem is the MPI-RMA interface specification

• Portability is the primary reason to consider MPI in the first place, so
• We're only interested in the semantic guarantees provided by the API 

(regardless of whether some implementations provide stronger guarantees)
– The MPI-RMA semantics should be fixed and generalized

• Perhaps a new synchronization mode that lifts the problematic semantic 
restrictions? Possibly as an optional feature?

• Adopt semantics similar to GASNet or ARMCI



Extra Slides



NAS-CG on P3-Myrinet 2000



NAS-MG on P3-Myrinet 2000



NAS-CG on Quadrics AlphaServer



NAS-MG on Quadrics AlphaServer


	Problems with using MPI 1.1 and 2.0 �as compilation targets for �parallel language implementations
	Overview
	Background - GAS Languages
	Communication Needs of GAS Languages
	Implementing GAS over MPI 1.1
	Network Latency and Overhead Comparison for Popular SAN's
	MPI 1.1 vs Vendor Network API�Application Performance Comparison
	Bulk-synchronous Apps on Quadrics AlphaServer
	Bulk-synchronous Apps on P3-Myrinet 2000 cluster
	NAS-MG on IBM SP-Power3
	Fine-grained CG on Quadrics AlphaServer
	MPI-RMA Overview
	MPI-RMA Problematic Semantic Restrictions
	Implications of MPI-RMA Semantics for GAS
	Implications of MPI-RMA Semantics for GAS
	Conclusions
	Conclusions
	Extra Slides
	NAS-CG on P3-Myrinet 2000
	NAS-MG on P3-Myrinet 2000
	NAS-CG on Quadrics AlphaServer
	NAS-MG on Quadrics AlphaServer

