
1

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 1Berkeley UPC: http://upc.lbl.gov

Optimizing Bandwidth Limited 
Problems Using One-Sided 
Communication and Overlap

Christian Bell1,2, Dan Bonachea1,
Rajesh Nishtala1, and Katherine Yelick1,2

1UC Berkeley, Computer Science Division
2Lawrence Berkeley National Laboratory

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 2Berkeley UPC: http://upc.lbl.gov

Conventional Wisdom
• Send few, large messages

– Allows the network to deliver the most effective bandwidth
• Isolate computation and communication phases 

– Uses bulk-synchronous programming 
– Allows for packing to maximize message size

• Message passing is preferred paradigm for clusters
• Global Address Space (GAS) Languages are 

primarily useful for latency sensitive applications 
• GAS Languages mainly help productivity

– However, not well known for their performance advantages



2

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 3Berkeley UPC: http://upc.lbl.gov

Our Contributions
• Increasingly, cost of HPC machines is in the network

• One-sided communication model is a better match 
to modern networks
– GAS Languages simplify programming for this model

• How to use these communication advantages 
– Case study with NAS Fourier Transform (FT)
– Algorithms designed to relieve communication bottlenecks 

• Overlap communication and computation
• Send messages early and often to maximize overlap

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 4Berkeley UPC: http://upc.lbl.gov

UPC Programming Model
• Global address space: any thread/process may 

directly read/write data allocated by another
• Partitioned: data is designated as local (near) or 

global (possibly far); programmer controls layout 

g: g: g: 

Proc 0 Proc 1 Proc n-1

• 3 of the current languages: UPC, CAF, and Titanium 
– Emphasis in this talk on UPC (based on C)
– However programming paradigms presented in this work are 

not limited to UPC

l: l: l: 

Global arrays:
Allows any 
processor to directly 
access data on any 
other processor

shared

private



3

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 5Berkeley UPC: http://upc.lbl.gov

Advantages of GAS Languages

• Productivity
– GAS supports construction of complex shared data structures
– High level constructs simplify parallel programming
– Related work has already focused on these advantages

• Performance (the main focus of this talk)
– GAS Languages can be faster than two-sided MPI
– One-sided communication paradigm for GAS languages more 

natural fit to modern cluster networks 
– Enables novel algorithms to leverage the power of these networks
– GASNet, the communication system in the Berkeley UPC Project, 

is designed to take advantage of this communication paradigm

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 6Berkeley UPC: http://upc.lbl.gov

One-Sided vs Two-Sided

• A one-sided put/get can be entirely handled by network interface with RDMA 
support

– CPU can dedicate more time to computation rather than handling communication 

• A two-sided message can employ RDMA for only part of the communication
– Each message requires the target to provide the destination address
– Offloaded to network interface in networks like Quadrics

• RDMA makes it apparent that MPI has added costs associated with ordering to 
make it usable as a end-user programming model

dest. addr.

message id

data payload

data payload

one-sided put (e.g., GASNet)

two-sided message (e.g., MPI)

network
interface

memory

host
CPU



4

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 7Berkeley UPC: http://upc.lbl.gov

Latency Advantages
• Comparison:

– One-sided:
• Initiator can always transmit 

remote address 
• Close semantic match to high 

bandwidth, zero-copy RDMA 
– Two-sided:

• Receiver must provide 
destination address

• Latency measurement correlates 
to software overhead
– Much of the small-message 

latency is due to time spent in 
software/firmware processing

do
w

n 
is

 g
oo

d

One-sided implementation consistently 
outperforms 2-sided counterpart

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 8Berkeley UPC: http://upc.lbl.gov

Bandwidth Advantages
• One-sided semantics better match to 

RDMA supported networks
– Relaxing point-to-point ordering 

constraint can allow for higher 
performance on some networks 

– GASNet saturates to hardware peak 
at lower message sizes

– Synchronization decoupled from data 
transfer

• MPI semantics designed for end user
– Comparison against good MPI 

implementation
– Semantic requirements hinder MPI 

performance
– Synchronization and data transferred 

coupled together in message passing

Over a factor of 2 improvement 
for 1kB messages

up is good



5

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 9Berkeley UPC: http://upc.lbl.gov

Bandwidth Advantages (cont)

• GASNet and MPI saturate 
to roughly the same 
bandwidth for “large”
messages

• GASNet consistently 
outperforms MPI for “mid-
range” message sizes

up is good

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 10Berkeley UPC: http://upc.lbl.gov

A Case Study: NAS FT
• How to use the potential that the microbenchmarks reveal?

• Perform a large 3 dimensional Fourier Transform
– Used in many areas of computational sciences 

• Molecular dynamics, computational fluid dynamics, image processing, 
signal processing, nanoscience, astrophysics, etc. 

• Representative of a class of communication intensive 
algorithms
– Sorting algorithms rely on a similar intensive communication pattern
– Requires every processor to communicate with every other processor
– Limited by bandwidth



6

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 11Berkeley UPC: http://upc.lbl.gov

Performing a 3D FFT
• NX x NY x NZ elements spread across P processors
• Will Use 1-Dimensional Layout in Z dimension

– Each processor gets NZ / P “planes” of NX x NY elements 
per plane

1D Partition

NX

NY

Example: P = 4

NZ

p0
p1

p2
p3

NZ/P

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 12Berkeley UPC: http://upc.lbl.gov

Performing a 3D FFT (part 2)
• Perform an FFT in all three dimensions
• With 1D layout, 2 out of the 3 dimensions are 

local while the last Z dimension is distributed

Step 1: FFTs on the columns
(all elements local)

Step 2: FFTs on the rows
(all elements local)

Step 3: FFTs in the Z-dimension
(requires communication)



7

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 13Berkeley UPC: http://upc.lbl.gov

Performing the 3D FFT (part 3)
• Can perform Steps 1 and 2 since all the data is 

available without communication
• Perform a Global Transpose of the cube

– Allows step 3 to continue

Transpose

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 14Berkeley UPC: http://upc.lbl.gov

The Transpose
• Each processor has to scatter input domain to other 

processors
– Every processor divides its portion of the domain into P pieces 
– Send each of the P pieces to a different processor

• Three different ways to break it up the messages
1. Packed Slabs (i.e. single packed “Alltoall” in MPI parlance)
2. Slabs
3. Pencils

• An order of magnitude increase in the number of messages
• An order of magnitude decrease in the size of each message
• “Slabs” and “Pencils” allow overlapping communication and 

computation and leverage RDMA support in modern networks 



8

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 15Berkeley UPC: http://upc.lbl.gov

Algorithm 1: Packed Slabs
Example with P=4, NX=NY=NZ=16

1. Perform all row and column FFTs
2. Perform local transpose 

– data destined to a remote processor 
are grouped together

3. Perform P puts of the data

Local transpose

put to proc 0

put to proc 1

put to proc 2

put to proc 3

• For 5123 grid across 64 processors
– Send 64 messages of 512kB each

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 16Berkeley UPC: http://upc.lbl.gov

Bandwidth Utilization
• NAS FT (Class D) with 256 processors on 

Opteron/InfiniBand
– Each processor sends 256 messages of 512kBytes
– Global Transpose (i.e. all to all exchange) only achieves 

67% of peak point-to-point bidirectional bandwidth 
– Many factors could cause this slowdown

• Network contention 
• Number of processors that each processor communicates with

• Can we do better?



9

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 17Berkeley UPC: http://upc.lbl.gov

Algorithm 2: Slabs
• Waiting to send all data in one phase 

bunches up communication events
• Algorithm Sketch

– for each of the NZ/P planes
• Perform all column FFTs
• for each of the P “slabs”

(a slab is NX/P rows)
– Perform FFTs on the rows in the slab
– Initiate 1-sided put of the slab 

– Wait for all puts to finish 
– Barrier

• Non-blocking RDMA puts allow data 
movement to be overlapped with 
computation. 

• Puts are spaced apart by the amount 
of time to perform FFTs on NX/P rows

Start computation 
for next plane

plane 0
put to proc 0

put to proc 1

put to proc 2

put to proc 3

• For 5123 grid across 64 
processors
– Send 512 messages of 

64kB each

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 18Berkeley UPC: http://upc.lbl.gov

Algorithm 3: Pencils
• Further reduce the granularity of 

communication
– Send a row (pencil) as soon as it is ready

• Algorithm Sketch
– For each of the NZ/P planes

• Perform all 16 column FFTs
• For r=0; r<NX/P; r++ 

– For each slab s in the plane
» Perform FFT on row r of slab s
» Initiate 1-sided put of row r 

– Wait for all puts to finish
– Barrier

• Large increase in message count
• Communication events finely diffused 

through computation
– Maximum amount of overlap
– Communication starts early 

plane 0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

Start computation 
for next plane

• For 5123 grid across 64 
processors
– Send 4096 messages 

of 8kB each



10

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 19Berkeley UPC: http://upc.lbl.gov

Communication Requirements
• 5123 across 64 processors

– Alg 1: Packed Slabs
• Send 64 messages of 512kB

– Alg 2: Slabs
• Send 512 messages of 64kB

– Alg 3: Pencils�
• Send 4096 messages of 8kB

With Slabs GASNet is slightly faster than 
MPI

GASNet achieves close to peak bandwidth 
with Pencils but MPI is about 50% less 
efficient at 8k With the message sizes in Packed Slabs both 

comm systems reach the same peak bandwidth 

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 20Berkeley UPC: http://upc.lbl.gov

Platforms

Tru64 v5.1, Elan3 
libelan 1.4.20, Compaq 
C V6.5-303, HP Fortra
Compiler X5.5A-4085-
48E1K

Quadrics QsNet1 Elan3 
/w dual rail (one rail 
used)

Quad 1 GHz Alpha 
21264 (750 nodes @ 
4GB/node)

Alpha/Elan3
“Lemieux” @ PSC

Linux 2.6.13, GM 2.0.19, 
Intel ifort 8.1-
20050207Z, icc 8.1-
20050207Z

Myricom Myrinet 2000 
M3S-PCI64B

Dual 3.0 Ghz Pentium 4 
Xeon (64 nodes @ 
3GB/node)

P4/Myrinet
“FSN” @ 
UC Berkeley Millennium 
Cluster

Linux 2.4.21-chaos, 
Elan4 libelan 1.8.14, 
Intel ifort 8.1.025, icc 8.
1.029

Quadrics QsNet2 Elan4Quad 1.4 Ghz Itanium2 
(1024 nodes @ 
8GB/node)

Itanium2/Elan4
“Thunder” @ LLNL

Linux 2.6.5, Mellanox 
VAPI, MVAPICH 0.9.5, 
Pathscale CC/F77 2.0

Mellanox Cougar 
InfiniBand 4x HCA

Dual 2.2 GHz Opteron 
(320 nodes @ 
4GB/node)

Opteron/Infiniband
“Jacquard” @ NERSC

SoftwareNetwork ProcessorName



11

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 21Berkeley UPC: http://upc.lbl.gov

0.75

1

1.25

1.5

1.75

2

2.25

2.5

P4/Myr
in

et/
64

Opte
ro

n/In
fin

iB
and/256

Alp
ha/Ela

n3/256

Alp
ha/Ela

n3/512

It
aniu

m
2/Ela

n4/256

It
aniu

m
2/Ela

n4/512
S

p
e
e
d

u
p

 o
v
e
r 

N
A

S
 F

o
rt

ra
n

/
M

P
I

UPC Packed Slabs
UPC Slabs
UPC Pencils

Comparison of Algorithms
• Compare 3 algorithms against 

original NAS FT
– All versions including Fortran 

use FFTW for local 1D FFTs
– Largest class that fit in the 

memory (usually class D)
• All UPC flavors outperform 

original Fortran/MPI 
implantation by at least 20%

– One-sided semantics allow 
even exchange based 
implementations to improve 
over MPI implementations

– Overlap algorithms spread the 
messages out, easing the 
bottlenecks 

– ~1.9x speedup in the best 
case

up is good

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 22Berkeley UPC: http://upc.lbl.gov

Time Spent in Communication
• Implemented the 3 

algorithms in MPI using 
Irecvs and Isends

• Compare time spent 
initiating or waiting for 
communication to finish
– UPC consistently spends 

less time in 
communication than its 
MPI counterpart

– MPI unable to handle 
pencils algorithm in some 
cases 

312.8 34.1 28.6

M
P

I C
ra

sh
 (P

en
ci

ls
)

0

2

4

6

8

10

12

P4/Myrin
et/

64

Opte
ro

n/In
fin

iBand/256

Alpha/Elan3/256

Alpha/Elan3/512

Ita
nium2/Elan4/256

Ita
nium2/Elan4/512

T
im

e
 S

p
e
n

t 
in

 C
o

m
m

 (
se

co
n

d
s)

UPC Slabs
UPC Pencils
MPI Slabs
MPI Pencils

do
w

n 
is

 g
oo

d



12

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 23Berkeley UPC: http://upc.lbl.gov

Performance Summary

0

200

400

600

800

1000

1200

P4/Myrinet/64

Opteron/InfiniBand/256

Alpha/Elan3/256

Alpha/Elan3/512

Itanium2/Elan4/256

Itanium2/Elan4/512

Platform

Best NAS Fortran/MPI
Best MPI (always Slabs)
Best UPC (always Pencils

M
FL

O
P

S
 / 

P
ro

c
up is good

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 24Berkeley UPC: http://upc.lbl.gov

Conclusions
• One-sided semantics used in GAS languages, such as UPC, 

provide a more natural fit to modern networks
– Benchmarks demonstrate these advantages

• Use these advantages to alleviate communication 
bottlenecks in bandwidth limited applications
– Paradoxically it helps to send more, smaller messages

• Both two-sided and one-sided implementations can see 
advantages of overlap
– One-sided implementations consistently outperform two-sided 

counterparts because comm model more natural fit

• Send early and often to avoid communication bottlenecks



13

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 25Berkeley UPC: http://upc.lbl.gov

Try It!

• Berkeley UPC is open source
– Download it from http://upc.lbl.gov

– Install it with CDs that we have here

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 26Berkeley UPC: http://upc.lbl.gov

Contact Us
• Authors

– Christian Bell
– Dan Bonachea
– Rajesh Nishtala
– Katherine A. Yelick
– Email us:

• upc@lbl.gov

Special thanks to the fellow 
members of the Berkeley 
UPC Group

• Wei Chen
• Jason Duell
• Paul Hargrove
• Parry Husbands
• Costin Iancu
• Mike Welcome

• Associated Paper: IPDPS ‘06 Proceedings
• Berkeley UPC Website: http://upc.lbl.gov
• GASNet Website: http://gasnet.cs.berkeley.edu


