
UPC Language Specifications, Version 1.3
UPC Required Library Specifications, Version 1.3
UPC Optional Library Specifications, Version 1.3

A publication of the UPC Consortium
Editors: Dan Bonachea* dobonachea@lbl.gov

 Gary Funck† gary@intrepid.com

http://upc-lang.org

November 16, 2013

Lawrence Berkeley National Lab Tech Report LBNL-6623E

Abstract:

UPC is an explicitly parallel extension to the ISO C 99 Standard. UPC follows the
partitioned global address space programming model. This document is the formal
specification for the UPC language and library syntax and semantics, and supersedes
prior specification version 1.2 (LBNL-59208).

Acknowledgements:
This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. See page 2 of the Language
Specifications for individual author affiliations and acknowledgements.

Copyright:
This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article
for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.

Legal Disclaimer:
This document was prepared as an account of work sponsored by the United States Government. While this document is
believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the
University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or the Regents of the University of California.

* Computational Research Division, Lawrence Berkeley National Laboratory
† Intrepid Technology, Inc., Palo Alto CA

UPC Language Specifications
Version 1.3

A publication of the UPC Consortium

November 16, 2013

UPC Language Specifications Version 1.3

Acknowledgments

1 Many have contributed to the ideas and concepts behind these specifica-
tions. William Carlson, Jesse Draper, David Culler, Katherine Yelick, Eu-
gene Brooks, and Karen Warren are the authors of the initial UPC language
concepts and specifications. Tarek El-Ghazawi, William Carlson, and Jesse
Draper are the authors of the first formal version of the specifications. Be-
cause of the numerous contributions to the specifications, no explicit authors
are currently mentioned. We also would like to acknowledge the role of the
participants in the first UPC workshop: the support and participation of
Compaq, Cray, HP, Sun, and CSC; the abundant input of Kevin Harris and
Sébastien Chauvin and the efforts of Lauren Smith; and the efforts of Brian
Wibecan and Greg Fischer were invaluable in bringing these specifications to
version 1.0.

2 Version 1.1 is the result of the contributions of many in the UPC community.
In addition to the continued support of all those mentioned above, the efforts
of Dan Bonachea were invaluable in this effort.

3 Version 1.2 is also the result of many contributors. Worthy of special note
(in addition to the continued support of those mentioned above) are the sub-
stantial contributions to many aspects of the specifications by Jason Duell;
Many have contributed to the ideas and concepts behind the UPC collectives
specifications. Elizabeth Wiebel and David Greenberg are the authors of the
first draft of that specification. Steve Seidel organized the effort to refine it
into its current form. Thanks go to many in the UPC community for their in-
terest and helpful comments, particularly Dan Bonachea, Bill Carlson, Jason
Duell and Brian Wibecan. Version 1.2 also includes the UPC I/O specifica-
tion which is the result of efforts by Tarek El Ghazawi, Francois Cantonnet,
Proshanta Saha, Rajeev Thakur, Rob Ross, and Dan Bonachea. Finally, it
also includes the substantial contributions to the UPC memory consistency
model by Kathy Yelick, Dan Bonachea, and Charles Wallace.

2 Acknowledgments

UPC Language Specifications Version 1.3

4 Version 1.3 is also the result of many contributors. Gary Funck created a
“Google Code Project” that was used to track issues, changes, and contribu-
tions. Details can be found at http://code.google.com/p/upc-specification.

5 Members of the UPC consortium may be contacted via the world wide web
at http://upc-lang.org, which provides links to many UPC-related resources.
This site hosts the official version of this language specification and related
library specifications, as well as annotated documents showing the complete
and detailed set of changes relative to prior specification revisions.

Comments on these specifications are always welcome.

Acknowledgments 3

UPC Language Specifications Version 1.3

Contents

Acknowledgments 2

Contents 4

Introduction 6

1 Scope 6

2 Normative references 7

3 Terms, definitions and symbols 7

4 Conformance 11

5 Environment 12
5.1 Conceptual models . 12

5.1.1 Translation environment 12
5.1.2 Execution environment 12

6 Language 15
6.1 Notations . 15
6.2 Keywords . 15
6.3 Predefined identifiers . 16

6.3.1 THREADS . 16
6.3.2 MYTHREAD . 16
6.3.3 UPC_MAX_BLOCK_SIZE 16

6.4 Expressions . 16
6.4.1 Unary Operators . 17
6.4.2 Pointer-to-shared arithmetic 19
6.4.3 Cast and assignment expressions 21
6.4.4 Address operators . 22

6.5 Declarations . 22
6.5.1 Type qualifiers . 23
6.5.2 Declarators . 26

6.6 Statements and blocks . 29
6.6.1 Barrier statements . 30

4 Contents

UPC Language Specifications Version 1.3

6.6.2 Iteration statements 32
6.7 Preprocessing directives . 34

6.7.1 UPC pragmas . 35
6.7.2 Predefined macro names 35

7 Library 37
7.1 Standard headers . 37
7.2 UPC utilities <upc.h> . 38

7.2.1 Termination of all threads 38
7.2.2 Shared memory allocation functions 38
7.2.3 Pointer-to-shared manipulation functions 41
7.2.4 Lock functions . 43
7.2.5 Shared string handling functions 47

7.3 UPC standard types <upc_types.h> 50
7.3.1 Operation designator (upc_op_t) 50
7.3.2 Type designator (upc_type_t) 51
7.3.3 Synchronization flags (upc_flag_t) 52
7.3.4 Memory Semantics of Library Functions 52

A Additions and Extensions 54

B Formal UPC Memory Consistency Semantics 56
B.1 Definitions . 56
B.2 Memory Access Model . 58
B.3 Consistency Semantics of Standard Libraries and Language

Operations . 60
B.3.1 Consistency Semantics of Synchronization Operations . 60
B.3.2 Consistency Semantics of Standard Library Calls . . . 61

B.4 Properties Implied by the Specification 64
B.5 Examples . 66
B.6 Formal Definition of Precedes 74

C UPC versus C Standard Section Numbering 78

References 79

Index 80

Contents 5

UPC Language Specifications Version 1.3

Introduction

1 UPC is a parallel extension to the C Standard. UPC follows the parti-
tioned global address space [CAG93] programming model. The first version
of UPC, known as version 0.9, was published in May of 1999 as technical
report [CDC99] at the Institute for Defense Analyses Center for Computing
Sciences.

2 Version 1.0 of UPC was initially discussed at the UPC workshop, held in
Bowie, Maryland, 18-19 May, 2000. The workshop had about 50 partici-
pants from industry, government, and academia. This version was adopted
with modifications in the UPC mini workshop meeting held during Super-
computing 2000, in November 2000, in Dallas, and finalized in February
2001.

3 Version 1.1 of UPC was initially discussed at the UPC workshop, held in
Washington, DC, 3-5 March, 2002, and finalized in October 2003.

4 Version 1.2 of UPC was initially discussed at the UPC workshop held in
Phoenix, AZ, 20 November 2003, and finalized in May 2005.

5 Version 1.3 of UPC was developed throughout 2012 via internet collaboration,
and finalized in November 2013.

1 Scope

1 This document focuses only on the UPC specifications that extend the C
Standard to an explicit parallel C based on the partitioned global address
space model. All C specifications as per ISO/IEC 9899 [ISO/IEC00] are con-
sidered a part of these UPC specifications, and therefore will not be addressed
in this document.

2 Small parts of the C Standard [ISO/IEC00] may be repeated for self-containment
and clarity of a subsequent UPC extension definition.

6 Introduction

UPC Language Specifications Version 1.3

2 Normative references

1 The following documents and their identified normative references constitute
provisions of these UPC specifications. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced
document applies.

2 ISO/IEC 9899: 1999(E), Programming languages - C [ISO/IEC00]

3 UPC Required Library Specifications [UPC-LIB-REQ]

4 UPC Optional Library Specifications [UPC-LIB-OPT]

5 The relationship between the section numbering used in the C Standard
[ISO/IEC00] and that used in this document is given in Appendix C and
noted at the beginning of each corresponding section.

6 Implementations shall document the exact revisions of [UPC-LIB-REQ] and
[UPC-LIB-OPT] to which they conform.

3 Terms, definitions and symbols

1 For the purpose of these specifications the following definitions apply.

2 Other terms are defined where they appear in italic type or on the left hand
side of a syntactical rule.

3.1

1 thread
an instance of execution initiated by the execution environment at program

startup.

3.2

1 ultimate element type
for non-array types, the type itself. For an array type “array of T”, the

§2 Normative references 7

UPC Language Specifications Version 1.3

ultimate element type of T.

3.3

1 shared type
a type whose ultimate element type is shared-qualified.

3.4

1 object
region of data storage in the execution environment which can represent

values.

3.4.1

1 shared object
an object allocated using a shared-qualified declarator or by a library func-

tion defined to create shared objects.

2 NOTE All threads may access shared objects.1

3.4.2

1 private object
any object which is not a shared object.

2 NOTE Each thread declares and creates its own private objects which no
other thread can access. 2

1The file scope declaration shared int x; creates a single object which any thread
may access.

2The file scope declaration int y; creates a separate object for each thread to access.

8 §3.3

UPC Language Specifications Version 1.3

3.4.3

1 shared array
an array with shared type.

3.5

1 affinity
logical association between shared objects and threads. Each byte in a

shared object has affinity to exactly one thread. The affinity of a shared
object is the same as that of the first byte in the object.3

3.6

1 pointer-to-shared
a pointer whose referenced type is a shared type.

3.7

1 pointer-to-local
a pointer whose referenced type is not a shared type.

3.8

1 access
<execution-time action> to read or modify the value of an object by a

thread.

3For non-array shared objects, all bytes in the object have the same affinity as the
object itself. This is not necessarily true for shared array objects, which may span multiple
threads.

§3.4.3 9

UPC Language Specifications Version 1.3

3.8.1

1 shared access
an access using an expression whose type is a shared type.

3.8.1.1

1 strict shared read
a shared read access which is determined to be strict according to section

6.5.1.1 of this specification.

3.8.1.2

1 strict shared write
a shared modify access which is determined to be strict according to section

6.5.1.1 of this specification.

3.8.1.3

1 relaxed shared read
a shared read access which is determined to be relaxed according to section

6.5.1.1 of this specification.

3.8.1.4

1 relaxed shared write
a shared modify access which is determined to be relaxed according to section
6.5.1.1 of this specification.

3.8.2

1 local access
an access using an expression whose type is not a shared type.

3.9

1 collective
constraint placed on some language operations which requires evaluation of

10 §3.8.1

UPC Language Specifications Version 1.3

such operations to be matched across all threads.4 The behavior of collec-
tive operations is undefined unless all threads execute the same sequence of
collective operations.

3.10

1 single-valued
an operand to a collective operation, which has the same value on every

thread. The behavior of the operation is otherwise undefined.

3.11

1 phase
an unsigned integer value associated with a pointer-to-shared which indi-

cates the element-offset within an affinity block; used in pointer-to-shared
arithmetic to determine affinity boundaries.

4 Conformance

1 All terminology and requirements defined in [ISO/IEC00 Sec. 4] also apply
to this document and UPC implementations.

4A collective operation need not provide any actual synchronization between threads,
unless otherwise noted. The collective requirement simply states a relative ordering prop-
erty of calls to collective operations that must be maintained in the parallel execution trace
for all executions of any legal program. Some implementations may include unspecified
synchronization between threads within collective operations, but programs must not rely
upon the presence or absence of such unspecified synchronization for correctness.

§3.10 11

UPC Language Specifications Version 1.3

5 Environment

5.1 Conceptual models

5.1.1 Translation environment

5.1.1.1 Threads environment

1 A UPC program is translated under either a static THREADS environment
or a dynamic THREADS environment. Under the static THREADS envi-
ronment, the number of threads to be used in execution is indicated to the
translator in an implementation-defined manner. If the actual execution en-
vironment differs from this number of threads, the behavior of the program
is undefined.

5.1.2 Execution environment

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
5.1.2]

2 A UPC program consists of a set of threads which may allocate both shared
and private objects. Accesses to these objects are defined as either local or
shared, based on the type of the access. Each thread’s local accesses behave
independently and exactly as described in [ISO/IEC00]. All shared accesses
behave as described herein.

3 There is an implicit upc_barrier at program startup and termination. Ex-
cept as explicitly specified by upc_barrier operations or by certain library
functions (all of which are explicitly documented), there are no other barrier
synchronization guarantees among the threads.

Forward references: upc_barrier (6.6.1).

5.1.2.1 Program startup

1 In the execution environment of a UPC program, derived from the hosted
environment as defined in the C Standard [ISO/IEC00], each thread calls the

12 Environment §5

UPC Language Specifications Version 1.3

UPC program’s main() function5.

5.1.2.2 Program termination

1 A program is terminated by the termination of all the threads6 or a call to
the function upc_global_exit().

2 Thread termination follows the C Standard definition of program termination
in [ISO/IEC00 Sec. 5.1.2.2.3]. A thread is terminated by reaching the }
that terminates the main function, by a call to the exit function, or by a
return from the initial main. Note that thread termination does not imply
the completion of all I/O and that shared data allocated by a thread either
statically or dynamically shall not be freed before UPC program termination.

Forward references: upc_global_exit (7.2.1).

5.1.2.3 Program execution

1 Thread execution follows the C Standard definition of program execution in
[ISO/IEC00 Sec. 5.1.2.3]. This section describes the additional operational
semantics users can expect from accesses to shared objects. In a shared
memory model such as UPC, operational descriptions of semantics are insuf-
ficient to completely and definitively describe a memory consistency model.
Therefore Appendix B presents the formal memory semantics of UPC. The
information presented in this section is consistent with the formal semantic
description, but not complete. Therefore, implementations of UPC based on
this section alone may be non-compliant.

2 All shared accesses are classified as being either strict or relaxed, as described
in sections 6.5.1.1 and 6.7.1. Accesses to shared objects via pointers-to-local
behave as relaxed shared accesses with respect to memory consistency. Most
synchronization-related language operations and library functions (notably
upc_fence, upc_notify, upc_wait, and upc_lock/upc_unlock) imply the con-
sistency effects of a strict access.

3 In general, any sequence of purely relaxed shared accesses issued by a given
thread in an execution may appear to be arbitrarily reordered relative to
program order by the implementation, and different threads need not agree

5e.g., in the program main(){ printf("hello"); } , each thread prints hello.
6A barrier is automatically inserted at thread termination.

§5.1.2.2 Program termination 13

UPC Language Specifications Version 1.3

upon the order in which such accesses appeared to have taken place. The
only exception to the previous statement is that two relaxed accesses is-
sued by a given thread to the same memory location where at least one is a
write will always appear to all threads to have executed in program order.
Consequently, relaxed shared accesses should never be used to perform deter-
ministic inter-thread synchronization - synchronization should be performed
using language/library operations whenever possible, or otherwise using only
strict shared reads and strict shared writes.

4 Strict accesses always appear (to all threads) to have executed in program
order with respect to other strict accesses, and in a given execution all threads
observe the effects of strict accesses in a manner consistent with a single,
global total order over the strict operations. Consequently, an execution of
a program whose only accesses to shared objects are strict is guaranteed to
behave in a sequentially consistent [Lam79] manner.

5 When a thread’s program order dictates a set of relaxed operations followed
by a strict operation, all threads will observe the effects of the prior relaxed
operations made by the issuing thread (in some order) before observing the
strict operation. Similarly, when a thread’s program order dictates a strict
access followed by a set of relaxed accesses, the strict access will be ob-
served by all threads before any of the subsequent relaxed accesses by the
issuing thread. Consequently, strict operations can be used to synchronize
the execution of different threads, and to prevent the apparent reordering of
surrounding relaxed operations across a strict operation.

6 NOTE: It is anticipated that most programs will use the strict synchro-
nization facilities provided by the language and library (e.g. barriers, locks,
etc) to synchronize threads and prevent non-determinism arising from data
races. A data race may occur whenever two or more relaxed operations from
different threads access the same location with no intervening strict synchro-
nization, and at least one such access is a write. Programs which produce
executions that are always free of data races (as formally defined in Appendix
B), are guaranteed to behave in a sequentially consistent manner.

Forward references: upc_fence, upc_notify, upc_wait, upc_barrier
(6.6.1). upc_lock, upc_unlock (7.2.4).

14 Program execution §5.1.2.3

UPC Language Specifications Version 1.3

6 Language

6.1 Notations

1 In the syntax notation used in this section, syntactic categories (nontermi-
nals) are indicated by italic type, and literal words and character set members
(terminals) by bold type. A colon (:) following a nonterminal introduces its
definition. An optional symbol is indicated by the subscript “opt”, so that

{ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑜𝑝𝑡 }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not
italicized and words are separated by spaces instead of hyphens.

6.2 Keywords

1 This subsection provides the UPC extensions of [ISO/IEC00 Sec 6.4.1].

Syntax

2 upc_keyword:
MYTHREAD upc_barrier upc_localsizeof
relaxed upc_blocksizeof UPC_MAX_BLOCK_SIZE
shared upc_elemsizeof upc_notify
strict upc_fence upc_wait
THREADS upc_forall

Semantics

3 In addition to the keywords defined in [ISO/IEC00 Sec 6.4.1], the above
tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords and shall not be otherwise used.

§6 Language 15

UPC Language Specifications Version 1.3

6.3 Predefined identifiers

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.4.2.2].

6.3.1 THREADS

1 THREADS is an expression with integral value; it specifies the number of
threads and has the same value on every thread. Under the static THREADS
translation environment, THREADS is an integer constant suitable for use in
#if preprocessing directives.

6.3.2 MYTHREAD

1 MYTHREAD is an expression with integral value; it specifies the unique thread
index.7The range of possible values is 0..THREADS-18.

6.3.3 UPC_MAX_BLOCK_SIZE

1 UPC_MAX_BLOCK_SIZE is a predefined integer constant value. It indicates the
maximum value9 allowed in a layout qualifier for shared data. It shall be
suitable for use in #if preprocessing directives.

6.4 Expressions

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.5]. In particular, the unary operator expressions in [ISO/IEC00 Sec. 6.5.3]
are extended with new syntax.

7The definition of MYTHREAD and THREADS as expressions, not objects or l-values,
means one cannot assign to them or take their address.

8e.g., the program main(){ printf("%d ",MYTHREAD); } , prints the numbers 0
through THREADS-1, in some order.

9 e.g. shared [UPC_MAX_BLOCK_SIZE+1] char x[UPC_MAX_BLOCK_SIZE+1] and
shared [*] char x[(UPC_MAX_BLOCK_SIZE+1)*THREADS] are translation errors.

16 Predefined identifiers §6.3

UPC Language Specifications Version 1.3

6.4.1 Unary Operators

Syntax

1 unary-expression

...

sizeof unary-expression

sizeof (type-name)

upc_localsizeof unary-expression

upc_localsizeof (type-name)

upc_blocksizeof unary-expression

upc_blocksizeof (type-name)

upc_elemsizeof unary-expression

upc_elemsizeof (type-name)

6.4.1.1 The sizeof operator

Semantics

1 The sizeof operator will result in an integer value which is not constant
when applied to a definitely blocked shared array under the dynamic THREADS
environment.

6.4.1.2 The upc_localsizeof operator

Constraints

1 The upc_localsizeof operator shall apply only to a shared type or an ex-
pression with shared type. All constraints on the sizeof operator [ISO/IEC00
Sec. 6.5.3.4] also apply to this operator.

Semantics

2 The upc_localsizeof operator returns the size, in bytes, of the local portion
of its operand, which may be a shared object or a shared type. It returns the
same value on all threads; the value is an upper bound of the size allocated
with affinity to any single thread and may include an unspecified amount of

§6.4.1 Unary Operators 17

UPC Language Specifications Version 1.3

padding. The result of upc_localsizeof is an integer constant.

3 The type of the result is size_t.

4 If the operand is an expression, that expression is not evaluated.

6.4.1.3 The upc_blocksizeof operator

Constraints

1 The upc_blocksizeof operator shall apply only to a shared type or an ex-
pression with shared type. All constraints on the sizeof operator [ISO/IEC00
Sec. 6.5.3.4] also apply to this operator.

Semantics

2 The upc_blocksizeof operator returns the block size of the ultimate element
type of the operand. The block size is the value specified in the layout
qualifier of the type declaration. If there is no layout qualifier, the block size
is 1. The result of upc_blocksizeof is an integer constant.

3 If the operand of upc_blocksizeof has indefinite block size, the value of
upc_blocksizeof is 0.

4 The type of the result is size_t.

5 If the operand is an expression, that expression is not evaluated.

Forward references: indefinite block size (6.5.1.1).

6.4.1.4 The upc_elemsizeof operator

Constraints

1 The upc_elemsizeof operator shall apply only to a shared type or an expres-
sion with shared type. All constraints on the sizeof operator [ISO/IEC00
Sec. 6.5.3.4] also apply to this operator.

Semantics

2 The upc_elemsizeof operator returns the size, in bytes, of the ultimate
element type of its operand. For a non-array operand, upc_elemsizeof
returns the same value as sizeof. The result of upc_elemsizeof is an
integer constant.

3 The type of the result is size_t.

18 The upc_blocksizeof operator §6.4.1.3

UPC Language Specifications Version 1.3

4 If the operand is an expression, that expression is not evaluated.

6.4.2 Pointer-to-shared arithmetic

Constraints

1 No binary operators shall be applied to one pointer-to-shared and one pointer-
to-local.

2 Relational operators (as defined in [ISO/IEC00 Sec 6.5.8]) shall not be ap-
plied to a pointer-to-shared with incomplete type.10

Semantics

3 When an expression that has integer type is added to or subtracted from a
pointer-to-shared, the result has the type of the pointer-to-shared operand. If
the pointer-to-shared operand points to an element of a shared array object,
and the shared array is large enough, the result points to an element of the
shared array. If the shared array is declared with indefinite block size, the
result of the pointer-to-shared arithmetic is identical to that described for
normal C pointers in [ISO/IEC00 Sec. 6.5.6], except that the thread of the
new pointer shall be the same as that of the original pointer and the phase
component is defined to always be zero. If the shared array has a definite
block size, then the following example describes pointer arithmetic:

shared [B] T *p, *p1; /* B a positive integer,
T not a shared type */

int i;

p1 = p + i;

4 After this assignment the following equations must hold in any UPC imple-
mentation. In each case the div operator indicates integer division rounding
towards negative infinity and the mod operator returns the nonnegative re-
mainder:11

ptrdiff_t elem_delta = i * (sizeof(T) / upc_elemsizeof(*p))
upc_phaseof(p1) == (upc_phaseof(p) + elem_delta) mod B

10Eg. The (>,<,>=,<=) operators may not have an operand with (shared void *)
type.

11The C “%” and “/” operators do not have the necessary properties

§6.4.2 Pointer-to-shared arithmetic 19

UPC Language Specifications Version 1.3

upc_threadof(p1) == (upc_threadof(p)
+ (upc_phaseof(p) + elem_delta) div B)

mod THREADS

5 In addition, the correspondence between shared and local addresses and
arithmetic is defined using the following constructs:

T *P1, *P2; /* T is not a shared type */
shared [] T *S1, *S2;

P1 = (T*) S1; /* allowed if upc_threadof(S1) == MYTHREAD */
P2 = (T*) S2; /* allowed if upc_threadof(S2) == MYTHREAD */

6 For all S1 and S2 that point to two distinct objects with affinity to the same
thread, where both are subobjects contained in the same shared array whose
ultimate element type is a qualified version of T:

• S1 and P1 shall point to the same object.

• S2 and P2 shall point to the same object.

• The expression P1 + (S2 - S1) == P2 shall evaluate to 1.12

7 Two compatible pointers-to-shared which point to the same object (i.e. hav-
ing the same address and thread components) shall compare as equal accord-
ing to == and !=, regardless of whether the phase components match.

8 When two pointers-to-shared are subtracted, as described in [ISO/IEC00 Sec.
6.5.6], the result is undefined unless there exists an integer x, representable
as a ptrdiff_t, such that (pts1 + x) == pts2 AND upc_phaseof(pts1 +
x) == upc_phaseof(pts2). In this case (pts2 - pts1) evaluates to x.

9 When two pointers-to-shared are compared using a relational operator, as
described in [ISO/IEC00 Sec 6.5.8], the expression pts1 ⊕ pts2 where ⊕
∈ {>,<,>=,<=} is equivalent to: (pts1 - pts2) ⊕ 0. If the result of the
subtraction is undefined, so is the result of the relational operator.

Forward references: upc_threadof (7.2.3.1), upc_phaseof (7.2.3.2).

12This implies there is no padding inserted between blocks of shared array elements with
affinity to a thread.

20 Pointer-to-shared arithmetic §6.4.2

UPC Language Specifications Version 1.3

6.4.3 Cast and assignment expressions

Constraints

1 A shared type qualifier shall not appear in a type cast where the correspond-
ing pointer component of the type of the expression being cast is not a shared
type. 13 An exception is made when a null pointer constant is cast, the result
is called the null pointer-to-shared.14

Semantics

2 The casting or assignment from one pointer-to-shared to another where one
of the types is a qualified or unqualified version of shared void*, the generic
pointer-to-shared, preserves the phase component unchanged in the resulting
pointer value (except as discussed in the next paragraph). The casting or
assignment from one non-generic pointer-to-shared to another in which either
the block size or the size of the ultimate element type of the referenced type
differs, or either type is incomplete, results in a pointer with a zero phase.

3 If a generic pointer-to-shared is cast to a non-generic pointer-to-shared type
with indefinite block size or with block size of one, the result is a pointer
with a phase of zero. Otherwise, if the phase of the former pointer value is
not within the range of possible phases of the latter pointer type, the result
is undefined.

4 If a non-null pointer-to-shared is cast15 to a pointer-to-local16 and the affinity
of any byte comprising the pointed-to shared object is not to the current
thread, the result is undefined.

5 If a null pointer-to-shared is cast to a pointer-to-local, the result is a null
pointer.

6 Bytes with affinity to a given thread containing shared objects can be ac-
cessed by either pointers-to-shared or pointers-to-local of that thread.

7 EXAMPLE 1:

int i, *p;
13i.e., pointers-to-local cannot be cast to pointers-to-shared.
14[ISO/IEC00 Sec. 6.3.2.3/6.5.16.1] imply that an implicit cast is allowed for zero and

that all null pointers-to-shared compare equal.
15As such pointers are not type compatible, explicit casts are required.
16Accesses through such cast pointers are local accesses and behave accordingly.

§6.4.3 Cast and assignment expressions 21

UPC Language Specifications Version 1.3

shared int *q;
q = (shared int *)p; /* is not allowed */
if (upc_threadof(q) == MYTHREAD)

p = (int *) q; /* is allowed */

6.4.4 Address operators

Semantics

1 When the unary & is applied to a shared structure element of type T, the
result has type shared [] T *.

2 When the unary & is applied to an expression with a shared array type, the
result is a pointer-to-shared that points to the beginning of the pointed-to
shared array, whose referenced type matches that of the expression the unary
& was applied to.

6.5 Declarations

1 UPC extends the declaration ability of C to allow shared types, shared data
layout across threads, and ordering constraint specifications.

Constraints

2 The declaration specifiers in a given declaration shall not include, either
directly or through one or more typedefs, both strict and relaxed.

3 The declaration specifiers in a given declaration shall not specify more than
one block size, either directly or indirectly through one or more typedefs.

Syntax

4 The following is the declaration definition as per [ISO/IEC00 Sec. 6.7], re-
peated here for self-containment and clarity of the subsequent UPC extension
specifications.

5 declaration:

declaration-specifiers init-declarator-list𝑜𝑝𝑡 ;

6 declaration-specifiers:

22 Address operators §6.4.4

UPC Language Specifications Version 1.3

storage-class-specifier declaration-specifiers𝑜𝑝𝑡

type-specifier declaration-specifiers𝑜𝑝𝑡

type-qualifier declaration-specifiers𝑜𝑝𝑡

function-specifier declaration-specifiers𝑜𝑝𝑡

7 init-declarator-list:

init-declarator

init-declarator-list , init-declarator

8 init-declarator:

declarator

declarator = initializer

Forward references: strict and relaxed type qualifiers (6.5.1.1).

6.5.1 Type qualifiers

1 This subsection provides the UPC parallel extensions of in [ISO/IEC00 Sec
6.7.3].

Syntax

2 type-qualifier:

const

restrict

volatile

shared-type-qualifier

reference-type-qualifier

6.5.1.1 The shared and reference type qualifiers

Syntax

1 shared-type-qualifier:

shared layout-qualifier𝑜𝑝𝑡

§6.5.1 Type qualifiers 23

UPC Language Specifications Version 1.3

2 reference-type-qualifier:

relaxed

strict

3 layout-qualifier:

[constant-expression𝑜𝑝𝑡]

[*]

Constraints

4 A reference type qualifier shall appear in a qualifier list only when the list
also contains a shared type qualifier.

5 A shared type qualifier can appear anywhere a type qualifier can appear
except that it shall not appear in the specifier-qualifier-list of a structure
declaration unless it qualifies a pointer’s referenced type, nor shall it appear
in any declarator where prohibited by section 6.5.2.17

6 A layout qualifier of [*] shall not appear in the declaration specifiers of a
pointer type.

7 A layout qualifier of [*] shall not appear in the declaration specifiers of a
declaration whose storage-class specifier is typedef.

8 A layout qualifier shall not appear in the type qualifiers for the referenced
type in a pointer to void type.

Semantics

9 Shared accesses shall be either strict or relaxed. Strict and relaxed shared
accesses behave as described in section 5.1.2.3 of this document.

10 An access shall be determined to be strict or relaxed as follows. If the
referenced type is strict-qualified or relaxed-qualified, the access shall be
strict or relaxed, respectively. Otherwise the access shall be determined to
be strict or relaxed by the UPC pragma rules, as described in section 6.6.1
of this document.

11 The layout qualifier dictates the blocking factor for the type being shared

17E.g., struct S1 { shared char * p1; }; is allowed, while struct S2 { char *
shared p2; }; is not.

24 The shared and reference type qualifiers §6.5.1.1

UPC Language Specifications Version 1.3

qualified. This factor is the nonnegative number of consecutive objects with
ultimate element type of the array (when evaluating pointer-to-shared arith-
metic and array declarations) which have affinity to the same thread. If the
optional constant expression is 0 or is not specified (i.e. []), this indicates an
indefinite blocking factor where all elements have affinity to the same thread.
If there is no layout qualifier, the blocking factor has the default value (1).
The blocking factor is also referred to as the block size.

12 A layout qualifier which does not specify an indefinite block size is said to
specify a definite block size .

13 The block size is a part of the type compatibility18

14 For purposes of assignment compatibility, generic pointers-to-shared behave
as if they always have a compatible block size.

15 The effective type of a shared object is the type as determined by [ISO/IEC00
Sec. 6.5], with the top-level (rightmost) shared qualifier removed.19

16 If the layout qualifier is of the form ‘[*]’, the shared object is distributed
as if it had a block size of

(sizeof(a) / upc_elemsizeof(a) + THREADS - 1) / THREADS,

where ‘a’ is the array being distributed.

17 EXAMPLE 1: declaration of a shared scalar

strict shared int y;

strict shared is the type qualifier.

18 EXAMPLE 2: automatic storage duration

void foo (void) {
18This is a powerful statement which allows, for example, that in an implementation

sizeof(shared int *) may differ from sizeof (shared [10] int *) and if T and S
are pointer-to-shared types with different block sizes, then T* and S* cannot be aliases.

19For example, in the file-scope declaration shared [10] int A[10*THREADS]; the ef-
fective type of the object A[0] is int. This implies the following lvalue expressions are all
permitted for accessing the object:

int x1 = A[0];
int x2 = *(int *)&(A[0]); // valid only for MYTHREAD==0
int x3 = *(shared [] int *)&(A[0]);

§6.5.1.1 The shared and reference type qualifiers 25

UPC Language Specifications Version 1.3

shared int x; /* a shared automatic variable is not allowed */
shared int* y; /* a pointer-to-shared is allowed */
int * shared z; /*a shared automatic variable is not allowed*/
... }

19 EXAMPLE 3: inside a structure

struct foo {
shared int x; /* this is not allowed */
shared int* y; /* a pointer-to-shared is allowed */
};

Forward references: shared array (6.5.2.1)

6.5.2 Declarators

Syntax

1 The following is the declarator definition as per [ISO/IEC00 Sec. 6.7.5], re-
peated here for self-containment and clarity of the subsequent UPC extension
specifications.

2 declarator:

pointer𝑜𝑝𝑡 direct-declarator

3 direct-declarator:

identifier

(declarator)

direct-declarator [type-qualifier-list𝑜𝑝𝑡 assignment-expression𝑜𝑝𝑡]

direct-declarator [static type-qualifier-list𝑜𝑝𝑡 assignment-expression]

direct-declarator [type-qualifier-list static assignment-expression]

direct-declarator [type-qualifier-list𝑜𝑝𝑡 *]

direct-declarator (parameter-type-list)

direct-declarator (identifier-list𝑜𝑝𝑡)

4 pointer:

26 Declarators §6.5.2

UPC Language Specifications Version 1.3

* type-qualifier-list𝑜𝑝𝑡

* type-qualifier-list𝑜𝑝𝑡 pointer

5 type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

Constraints

6 No type qualifier list shall specify more than one block size, either directly
or indirectly through one or more typedefs.20

7 No type qualifier list shall include both strict and relaxed either directly
or indirectly through one or more typedefs.

8 No object with automatic storage duration shall have a shared type.

Semantics

9 All shared objects created by non-array static declarators have affinity with
thread zero.

6.5.2.1 Array declarators

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.7.5.2].

Constraints

2 When a UPC program is translated in the dynamic THREADS environment,
the following restrictions apply: Every declaration of a shared array with
definite blocksize shall include the THREADS keyword exactly once, in one
dimension of the array (including through typedefs). Every array type that
is a shared type with definite blocksize shall include the THREADS keyword
at most once, in one dimension (including through typedefs). In both cases,
the THREADS keyword shall only occur either alone or when multiplied by
an integer constant expression (as defined in [ISO/IEC00 Sec. 6.6]) with
positive value. 21

20While layout qualifiers are most often seen in array or pointer declarators, they are
allowed in all declarators. For example, shared [3] int y is allowed.

21In the static THREADS environment THREADS is an integer constant expression,

§6.5.2.1 Array declarators 27

UPC Language Specifications Version 1.3

3 The THREADS keyword shall not appear in any array type that is a shared
array with indefinite blocksize under the dynamic THREADS environment.

4 If an init-declarator that declares a shared array includes an initializer, the
behavior is implementation-defined.

Semantics

5 The objects with ultimate element type that comprise a shared array are
distributed in a round robin fashion, by chunks of block-size objects, such
that the i-th object has affinity with thread (⌊𝑖/𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒⌋ mod THREADS).

6 In an array declaration, the type qualifier applies to the ultimate element
type of the array.

7 For any shared array, a, upc_phaseof (&a) is zero.

8 EXAMPLE 1: declarations allowed in either static THREADS or dynamic
THREADS translation environments:

shared int x [10*THREADS];
shared int x [THREADS*(100*20)];
shared [] int x [10];

9 EXAMPLE 2: declarations allowed only in static THREADS translation
environment:

shared int x [10+THREADS];
shared [] int x [THREADS];
shared int x [10];
shared int x [THREADS][4*THREADS];
shared int x [THREADS*THREADS];
shared int x [THREADS*100*20];
shared int (**p)[THREADS][THREADS];
typedef shared int (*t)[THREADS][13][THREADS];
shared void *p = (shared int (*)[THREADS][THREADS])q;

10 EXAMPLE 3: declaration of a shared array

shared [3] int x [10];

shared [3] is the type qualifier of an array, x, of 10 integers. [3] is the
layout qualifier.
and is therefore valid in all dimensions.

28 Array declarators §6.5.2.1

UPC Language Specifications Version 1.3

11 EXAMPLE 4:

typedef int S[10];
shared [3] S T[3*THREADS];

shared [3] applies to the ultimate element type of T, which is int, regardless
of the typedef. The array is blocked as if it were declared:

shared [3] int T[3*THREADS][10];

12 EXAMPLE 5:

shared [] double D[100];

All elements of the array D have affinity to thread 0. No THREADS dimension
is allowed in the declaration of D.

13 EXAMPLE 6:

shared [] long *p;

All elements accessed by subscripting or otherwise dereferencing p have affin-
ity to the same thread. That thread is determined by the assignment which
sets p.

6.6 Statements and blocks

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.8].

Syntax

2 statement:

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

§6.6 Statements and blocks 29

UPC Language Specifications Version 1.3

synchronization-statement

6.6.1 Barrier statements

Syntax

1 synchronization-statement:

upc_notify expression𝑜𝑝𝑡 ;

upc_wait expression𝑜𝑝𝑡 ;

upc_barrier expression𝑜𝑝𝑡 ;

upc_fence ;

Constraints

2 expression shall have a type such that its value may be assigned to an object
of type int.

Semantics

3 Each thread shall execute an alternating sequence of upc_notify and upc_wait
statements, starting with a upc_notify and ending with a upc_wait state-
ment. After a thread executes upc_notify the next collective operation it
executes must be a upc_wait.22 A synchronization phase consists of the ex-
ecution of all statements between the completion of one upc_wait and the
start of the next.

4 A upc_wait statement completes, and the thread enters the next synchro-
nization phase, only after all threads have completed the upc_notify state-
ment in the current synchronization phase.23 upc_wait and upc_notify are
collective operations.

5 The upc_fence statement is equivalent to a null strict access. This insures
that all shared accesses issued before the fence are complete before any after
it are issued.24

22This effectively prohibits issuing any collective operations between a upc_notify and
a upc_wait.

23Therefore, all threads are entering the same synchronization phase as they complete
the upc_wait statement.

24One implementation of upc_fence may be achieved by a null strict access: { static

30 Barrier statements §6.6.1

UPC Language Specifications Version 1.3

6 A null strict access is implied before25 a upc_notify statement and after a
upc_wait statement.26

7 If one or more threads provide optional expressions to upc_notify in the
current synchronization phase, then the subsequent upc_wait statement
of at least one thread shall interrupt the execution of the program in an
implementation-defined manner if either of the following two rules are vio-
lated: 27 1) All optional expressions provided to upc_notify must have equal
values (a consensus). 2) Any optional expression provided to upc_wait must
equal the consensus value from the upc_notify. If no thread provides an
optional expression to upc_notify, then no interruption shall be generated.

8 The upc_barrier statement is equivalent to the compound statement28:

{ upc_notify barrier_value; upc_wait barrier_value; }

where barrier_value is the result of evaluating expression if present, oth-
erwise omitted.

9 The barrier operations at thread startup and termination have a value of
expression which is not in the range of the type int.29

10 EXAMPLE 1: The following will result in a runtime error:

{ upc_notify; upc_barrier; upc_wait; }

as it is equivalent to

{ upc_notify; upc_notify; upc_wait; upc_wait; }

shared strict int x; x = x;}
25After the evaluation of expression, if present
26This implies that shared accesses executed after the upc_notify and before the

upc_wait may occur in either the synchronization phase containing the upc_notify or
the next on different threads.

27After such an interruption, subsequent behavior is undefined.
28This equivalence is explicit with respect to matching expressions in semantic 7 and

collective status in semantic 3.
29These barriers are never expressed in a UPC source program and this semantic says

these barrier values can never match one expressed in a user program.

§6.6.1 Barrier statements 31

UPC Language Specifications Version 1.3

6.6.2 Iteration statements

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.8.5].

Syntax

2 iteration-statement:

while (expression) statement

do statement while (expression) ;

for (expression𝑜𝑝𝑡; expression𝑜𝑝𝑡; expression𝑜𝑝𝑡) statement

for (declaration expression𝑜𝑝𝑡; expression𝑜𝑝𝑡) statement

upc_forall (expression𝑜𝑝𝑡; expression𝑜𝑝𝑡; expression𝑜𝑝𝑡; affinity𝑜𝑝𝑡)
statement

upc_forall (declaration expression𝑜𝑝𝑡; expression𝑜𝑝𝑡;
affinity𝑜𝑝𝑡) statement

3 affinity:

expression

continue

Constraints:

4 The expression for affinity shall have pointer-to-shared type or integer type.

Semantics:

5 upc_forall is a collective operation in which, for each execution of the loop
body, the controlling expression and affinity expression are single-valued.30

6 The affinity field specifies the executions of the loop body which are to be
performed by a thread.

7 When affinity is of pointer-to-shared type, the loop body of the upc_forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value of upc_threadof(affinity). Each iteration of the loop body is

30Note that single-valued implies that all thread agree on the total number of iterations,
their sequence, and which threads execute each iteration.

32 Iteration statements §6.6.2

UPC Language Specifications Version 1.3

executed by precisely one thread.

8 When affinity is an integer expression, the loop body of the upc_forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value affinity mod THREADS. If the value of affinity is negative, behavior
is undefined.

9 When affinity is continue or not specified, each loop body of the upc_forall
statement is performed by every thread and semantic 5 does not apply.

10 If the loop body of a upc_forall statement contains one or more upc_forall
statements, either directly or through one or more function calls, the con-
struct is called a nested upc_forall statement. In a nested upc_forall, the
outermost upc_forall statement that has an affinity expression which is
not continue is called the controlling upc_forall statement. All upc_forall
statements which are not controlling in a nested upc_forall behave as if their
affinity expressions were continue. Nesting of upc_forall statements is
considered an obsolescent feature, and may be prohibited in a future revision
of this specification.

11 Every thread evaluates the first three clauses of a upc_forall statement
in accordance with the semantics of the corresponding clauses for the for
statement, as defined in [ISO/IEC00 Sec. 6.8.5.3]. Every thread evaluates
the fourth clause of every iteration.

12 If the execution of any loop body of a upc_forall statement produces a
side-effect which affects the execution of another loop body of the same
upc_forall statement which is executed by a different thread31, the be-
havior is undefined.

13 If any thread terminates or executes a collective operation within the dy-
namic scope of a upc_forall statement, the result is undefined. If any
thread terminates a upc_forall statement using a break, goto , or return
statement, or the longjmp function, the result is undefined. If any thread en-
ters the body of a upc_forall statement using a goto statement, the result
is undefined.32

31This semantic implies that side effects on the same thread have defined behavior, just
like in the for statement.

32The continue statement behaves as defined in [ISO/IEC00 Sec. 6.8.6.2]; equivalent
to a goto the end of the loop body.

§6.6.2 Iteration statements 33

UPC Language Specifications Version 1.3

14 EXAMPLE 1: Nested upc_forall:

main () {
int i,j,k;
shared float *a, *b, *c;

upc_forall(i=0; i<N; i++; continue)
upc_forall(j=0; j<N; j++; &a[j])

upc_forall (k=0; k<N; k++; &b[k])
a[j] = b[k] * c[i];

}

This example executes all iterations of the “i” and “k” loops on every thread,
and executes iterations of the “j” loop on those threads where upc_threadof
(&a[j]) equals the value of MYTHREAD.

15 EXAMPLE 2: Evaluation of upc_forall arguments:

int i;
upc_forall((foo1(), i=0); (foo2(), i<10); (foo3(), i++); i) {

foo4(i);
}

Each thread evaluates foo1() exactly once, before any further action on that
thread. Each thread will execute foo2() and foo3() in alternating sequence, 10
times on each thread, followed by a final call to foo2() on each thread before
the loop terminates. Assuming there is no enclosing upc_forall loop, foo4()
will be evaluated exactly 10 times total before the last thread exits the loop,
once with each of i=0..9. Evaluations of foo4() may occur on different threads
(as determined by the affinity clause) with no implied synchronization or
serialization between foo4() evaluations or controlling expressions on different
threads. The final value of i is 10 on all threads.

6.7 Preprocessing directives

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.10].

34 Preprocessing directives §6.7

UPC Language Specifications Version 1.3

6.7.1 UPC pragmas

Semantics

1 If the preprocessing token upc immediately follows the pragma, then no macro
replacement is performed and the directive shall have one of the following
forms:

#pragma upc strict

#pragma upc relaxed

2 These pragmas affect the strict or relaxed categorization of shared accesses
where the referenced type is neither strict-qualified nor relaxed-qualified.
Such accesses shall be strict if a strict pragma is in effect, or relaxed if a
relaxed pragma is in effect.

3 Each translation unit has an implicit #pragma upc relaxed before the first
line.

4 The pragmas shall occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When
they are outside external declarations, they apply until another such pragma
or the end of the translation unit. When inside a compound statement,
they apply until the end of the compound statement; at the end of the
compound statement the state of the pragmas is restored to that preceding
the compound statement. If these pragmas are used in any other context,
their behavior is undefined.

6.7.2 Predefined macro names

1 The following macro names shall be defined by the implementation33

__UPC__ The integer constant 1, indicating a conforming implementation.

__UPC_VERSION__ The integer constant 201311L.

UPC_MAX_BLOCK_SIZE The integer constant as defined in section 6.3.3.

2 The following macro names are conditionally defined by the implementation:
33In addition to these macro names, the semantics of [ISO/IEC00 Sec. 6.10.8] apply to

the identifier MYTHREAD.

§6.7.1 UPC pragmas 35

UPC Language Specifications Version 1.3

__UPC_DYNAMIC_THREADS__ The integer constant 1 in the dynamic THREADS
translation environment, otherwise undefined.

__UPC_STATIC_THREADS__ The integer constant 1 in the static THREADS
translation environment, otherwise undefined.

THREADS The integer constant as defined in section 6.3.1 in the static
THREADS translation environment.

36 Predefined macro names §6.7.2

UPC Language Specifications Version 1.3

7 Library

7.1 Standard headers

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.1.2].

2 The standard headers are

<upc_strict.h>
<upc_relaxed.h>
<upc.h>
<upc_types.h>

3 Every inclusion of <upc_strict.h> asserts the upc strict pragma and has
the effect of including <upc.h>.

4 Every inclusion of <upc_relaxed.h> asserts the upc relaxed pragma and has
the effect of including <upc.h>.

5 Every inclusion of <upc.h> has the effect of including <upc_types.h>.

6 By convention, all UPC standard library functions are named using the prefix
upc_. Those which are collective have prefix upc_all_.

§7 Library 37

UPC Language Specifications Version 1.3

7.2 UPC utilities <upc.h>

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.20]. All of the characteristics of library functions described in [ISO/IEC00
Sec 7.1.4] apply to these as well.

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.2 are declared by the header <upc.h>.

7.2.1 Termination of all threads

Synopsis

1 #include <upc.h>
void upc_global_exit(int status);

Description

2 upc_global_exit() flushes all I/O, releases all storage, and terminates the
execution for all active threads.

7.2.2 Shared memory allocation functions

1 The UPC memory allocation functions return, if successful, a pointer-to-
shared which is suitably aligned so that it may be assigned to a pointer-to-
shared of any type. The pointer has zero phase and points to the start of the
allocated space. If the space cannot be allocated, a null pointer-to-shared is
returned.

2 There is no required correspondence between the functions specified in Sec-
tion 7.2.2 to allocate and free objects. Either of the upc_free or upc_all_free
functions may be used to free shared space allocated using upc_all_alloc,
upc_global_alloc or upc_alloc.

7.2.2.1 The upc_global_alloc function

Synopsis

1 #include <upc.h>
shared void *upc_global_alloc(size_t nblocks, size_t nbytes);

Description

38 UPC utilities <upc.h> §7.2

UPC Language Specifications Version 1.3

2 The upc_global_alloc allocates shared space compatible with the declara-
tion:

shared [nbytes] char[nblocks * nbytes].

3 The upc_global_alloc function is not a collective function. If called by
multiple threads, all threads which make the call get different allocations. If
nblocks*nbytes is zero, the result is a null pointer-to-shared.

7.2.2.2 The upc_all_alloc function

Synopsis

1 #include <upc.h>
shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

Description

2 upc_all_alloc is a collective function with single-valued arguments.

3 The upc_all_alloc function allocates shared space compatible with the fol-
lowing declaration:

shared [nbytes] char[nblocks * nbytes].

4 The upc_all_alloc function returns the same pointer value on all threads.
If nblocks*nbytes is zero, the result is a null pointer-to-shared.

5 The dynamic lifetime of an allocated object extends from the time any thread
completes the call to upc_all_alloc until any thread has deallocated the
object.

7.2.2.3 The upc_alloc function

Synopsis

1 #include <upc.h>
shared void *upc_alloc(size_t nbytes);

Description

2 The upc_alloc function allocates shared space of at least nbytes bytes with
affinity to the calling thread.

3 upc_alloc is similar to malloc() except that it returns a pointer-to-shared
value. It is not a collective function. If nbytes is zero, the result is a null
pointer-to-shared.

§7.2.2.2 The upc_all_alloc function 39

UPC Language Specifications Version 1.3

7.2.2.4 The upc_free function

Synopsis

1 #include <upc.h>
void upc_free(shared void *ptr);

Description

2 The upc_free function frees the dynamically allocated shared storage pointed
to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if the argu-
ment does not match a pointer earlier returned by the upc_alloc, upc_global_alloc
or upc_all_alloc functions, or if the space has been deallocated by a pre-
vious call to upc_free by any thread,34 or a previous call to upc_all_free,
the behavior is undefined.

7.2.2.5 The upc_all_free function

Synopsis

1 #include <upc.h>
void upc_all_free(shared void *ptr);

Description

2 upc_all_free is a collective variant of upc_free, provided as a convenience.
It must be called collectively by all threads with the single-valued argument
ptr.

3 The upc_all_free function frees the dynamically allocated shared storage
pointed to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if
the argument does not match a pointer earlier returned by the upc_alloc,
upc_global_alloc, or upc_all_alloc functions, or if the space has been
deallocated by a previous call to upc_free or upc_all_free, the behavior
is undefined.

4 The shared storage referenced by ptr is guaranteed to remain valid until all
threads have entered the call to upc_all_free, but the function does not
otherwise guarantee any synchronization or strict reference.

34i.e., only one thread may call upc_free for each allocation

40 The upc_free function §7.2.2.4

UPC Language Specifications Version 1.3

7.2.3 Pointer-to-shared manipulation functions

7.2.3.1 The upc_threadof function

Synopsis

1 #include <upc.h>
size_t upc_threadof(shared void *ptr);

Description

2 The upc_threadof function returns the index of the thread that has affinity
to the shared object pointed to by ptr.35

3 If ptr is a null pointer-to-shared, the function returns 0.

7.2.3.2 The upc_phaseof function

Synopsis

1 #include <upc.h>
size_t upc_phaseof(shared void *ptr);

Description

2 The upc_phaseof function returns the phase component of the pointer-to-
shared argument.36

3 If ptr is a null pointer-to-shared, the function returns 0.

7.2.3.3 The upc_resetphase function

Synopsis

1 #include <upc.h>
shared void *upc_resetphase(shared void *ptr);

Description

2 The upc_resetphase function returns a pointer-to-shared which is identical
to its input except that it has zero phase.

35This function is used in defining the semantics of pointer-to-shared arithmetic in Sec-
tion 6.4.2

36This function is used in defining the semantics of pointer-to-shared arithmetic in Sec-
tion 6.4.2

§7.2.3 Pointer-to-shared manipulation functions 41

UPC Language Specifications Version 1.3

7.2.3.4 The upc_addrfield function

Synopsis

1 #include <upc.h>
size_t upc_addrfield(shared void *ptr);

Description

2 The upc_addrfield function returns an implementation-defined value re-
flecting the “local address” of the object pointed to by the pointer-to-shared
argument.

3 Given the following declarations:

T *P1, *P2; /* T is not a shared type */
shared T *S1, *S2;

P1 = (T*) S1; /* allowed if upc_threadof(S1) == MYTHREAD */
P2 = (T*) S2; /* allowed if upc_threadof(S2) == MYTHREAD */

For all S1 and S2 that point to two distinct elements of the same shared
array object which have affinity to the same thread, the expression:
((ptrdiff_t) upc_addrfield(S2) - (ptrdiff_t)upc_addrfield(S1))
shall evaluate to the same value as: ((P2 - P1) * sizeof(T)).

7.2.3.5 The upc_affinitysize function

Synopsis

1 #include <upc.h>
size_t upc_affinitysize(size_t totalsize, size_t nbytes,

size_t threadid);

Description

2 upc_affinitysize is a convenience function which calculates the exact size
of the local portion of the data in a shared object with affinity to threadid.

3 In the case of a dynamically allocated shared object, the totalsize argu-
ment shall be nbytes*nblocks and the nbytes argument shall be nbytes,
where nblocks and nbytes are exactly as passed to upc_global_alloc or
upc_all_alloc when the object was allocated.

4 In the case of a statically allocated shared object with declaration:

42 The upc_addrfield function §7.2.3.4

UPC Language Specifications Version 1.3

shared [b] t d[s];

the totalsize argument shall be s * sizeof (t) and the nbytes argument
shall be b * upc_elemsizeof (d). If the block size is indefinite, nbytes
shall be 0.

5 threadid shall be a value in 0..(THREADS-1).

7.2.4 Lock functions

7.2.4.1 Type

1 The type declared is

upc_lock_t

2 The type upc_lock_t is an opaque UPC type. upc_lock_t is a shared
datatype with incomplete type (as defined in [ISO/IEC00 Sec 6.2.5]). Objects
of type upc_lock_t may therefore only be manipulated through pointers.
Such objects have two states called locked and unlocked.

3 Two pointers to upc_lock_t that reference the same lock object will compare
as equal. The results of applying upc_phaseof(), upc_threadof(), and
upc_addrfield() to such pointers are undefined.

4 There is no required correspondence between the functions specified in
Section 7.2.4 to allocate and free locks. Either of the upc_lock_free or
upc_all_lock_free functions may be used to free locks allocated using
upc_global_lock_alloc or upc_all_lock_alloc.

7.2.4.2 The upc_global_lock_alloc function

Synopsis

1 #include <upc.h>
upc_lock_t *upc_global_lock_alloc(void);

Description

2 The upc_global_lock_alloc function dynamically allocates a lock and re-
turns a pointer to it. The lock is created in an unlocked state.

3 The upc_global_lock_alloc function is not a collective function. If called
by multiple threads, all threads which make the call get different allocations.

§7.2.4 Lock functions 43

UPC Language Specifications Version 1.3

7.2.4.3 The upc_all_lock_alloc function

Synopsis

1 #include <upc.h>
upc_lock_t *upc_all_lock_alloc(void);

Description

2 The upc_all_lock_alloc function dynamically allocates a lock and returns
a pointer to it. The lock is created in an unlocked state.

3 The upc_all_lock_alloc is a collective function. The return value on every
thread points to the same lock object.

7.2.4.4 The upc_lock_free function

Synopsis

1 #include <upc.h>
void upc_lock_free(upc_lock_t *ptr);

Description

2 The upc_lock_free function frees all resources associated with the dynam-
ically allocated upc_lock_t pointed to by ptr. If ptr is a null pointer, no
action occurs. Otherwise, if the argument does not match a pointer earlier
returned by the upc_global_lock_alloc or upc_all_lock_alloc function,
or if the lock has been deallocated by a previous call to upc_lock_free by
any thread, 37 or a previous call to upc_all_lock_free, the behavior is
undefined.

3 upc_lock_free succeeds regardless of whether the referenced lock is cur-
rently unlocked or currently locked (by any thread).

4 Subsequent or concurrent calls from any thread to functions defined in Sec-
tion 7.2.4 using the lock referenced by ptr have undefined behavior. This
also applies to any call to upc_lock on the the lock referenced by ptr which
is blocked at the time of the call to upc_lock_free.

7.2.4.5 The upc_all_lock_free function

Synopsis

37i.e., only one thread may call upc_lock_free for each allocation

44 The upc_all_lock_alloc function §7.2.4.3

UPC Language Specifications Version 1.3

1 #include <upc.h>
void upc_all_lock_free(upc_lock_t *ptr);

Description

2 upc_all_lock_free is a collective variant of upc_lock_free, provided as a
convenience. It must be called collectively by all threads with the single-
valued argument ptr.

3 The upc_all_lock_free function frees all resources associated with the dy-
namically allocated upc_lock_t pointed to by ptr. If ptr is a null pointer,
no action occurs. Otherwise, if the argument does not match a pointer earlier
returned by the upc_global_lock_alloc or upc_all_lock_alloc function,
or if the lock has been deallocated by a previous call to upc_lock_free or
upc_all_lock_free, the behavior is undefined.

4 upc_all_lock_free succeeds regardless of whether the referenced lock is
currently unlocked or currently locked (by any thread).

5 The lock referenced by ptr is guaranteed to remain valid until all threads have
entered the call to upc_all_lock_free, but the function does not otherwise
guarantee any synchronization or strict reference.

6 Any subsequent calls from any thread to functions defined in Section 7.2.4
using the lock referenced by ptr have undefined behavior.

7.2.4.6 The upc_lock function

Synopsis

1 #include <upc.h>
void upc_lock(upc_lock_t *ptr);

Description

2 The upc_lock function sets the state of the lock pointed to by ptr to locked.

3 If the lock is already in locked state due to the calling thread setting it to
locked state, the result is undefined.

4 If the lock is already in locked state, then the calling thread waits for some
other thread to set the state to unlocked.38

38If no other thread calls upc_unlock on ptr the calling thread will never return from
this function.

§7.2.4.6 The upc_lock function 45

UPC Language Specifications Version 1.3

5 Once the lock is in state unlocked, a single calling thread sets the state to
locked and the function returns.

6 A null strict access is implied after a call to upc_lock().

7.2.4.7 The upc_lock_attempt function

Synopsis

1 #include <upc.h>
int upc_lock_attempt(upc_lock_t *ptr);

Description

2 The upc_lock_attempt function attempts to set the state of the lock pointed
to by ptr to locked.

3 If the lock is already in locked state due to the calling thread setting it to
locked state, the result is undefined.

4 If the lock is already in locked state the function returns 0.

5 If the lock is in state unlocked, a single calling thread sets the state to locked
and the function returns 1.

6 A null strict access is implied after a call to upc_lock_attempt() that returns
1.

7.2.4.8 The upc_unlock function

Synopsis

1 #include <upc.h>
void upc_unlock(upc_lock_t *ptr);

Description

2 The upc_unlock function sets the state of the lock pointed to by ptr to
unlocked.

3 Unless the lock is in locked state and the calling thread is the locking thread,
the result is undefined.

4 A null strict access is implied before a call to upc_unlock().

46 The upc_lock_attempt function §7.2.4.7

UPC Language Specifications Version 1.3

7.2.5 Shared string handling functions

7.2.5.1 The upc_memcpy function

Synopsis

1 #include <upc.h>
void upc_memcpy(shared void * restrict dst,

shared const void * restrict src, size_t n);

Description

2 The upc_memcpy function copies n characters from a shared object having
affinity with one thread to a shared object having affinity with the same or
another thread.

3 The upc_memcpy function treats the dst and src pointers as if they had
type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to another shared array object with
this type (the dst array).

4 If copying takes place between objects that overlap, the behavior is unde-
fined.

7.2.5.2 The upc_memget function

Synopsis

1 #include <upc.h>
void upc_memget(void * restrict dst,

shared const void * restrict src, size_t n);

Description

2 The upc_memget function copies n characters from a shared object with affin-
ity to any single thread to an object on the calling thread.

3 The upc_memget function treats the src pointer as if it had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to an array object (the dst array)

§7.2.5 Shared string handling functions 47

UPC Language Specifications Version 1.3

declared with the type

char[n]

4 If copying takes place between objects that overlap, the behavior is unde-
fined.

7.2.5.3 The upc_memput function

Synopsis

1 #include <upc.h>
void upc_memput(shared void * restrict dst,

const void * restrict src, size_t n);

Description

2 The upc_memput function copies n characters from an object on the calling
thread to a shared object with affinity to any single thread.

3 The upc_memput function is equivalent to copying the entire contents from
an array object (the src array) declared with the type

char[n]

to a shared array object (the dst array) with the type

shared [] char[n]

4 If copying takes place between objects that overlap, the behavior is unde-
fined.

7.2.5.4 The upc_memset function

Synopsis

1 #include <upc.h>
void upc_memset(shared void *dst, int c, size_t n);

Description

2 The upc_memset function copies the value of c, converted to an unsigned
char, to a shared object with affinity to any single thread. The number of
bytes set is n.

3 The upc_memset function treats the dst pointer as if had type:

shared [] char[n]

48 The upc_memput function §7.2.5.3

UPC Language Specifications Version 1.3

The effect is equivalent to setting the entire contents of a shared array object
with this type (the dst array) to the value c.

§7.2.5.4 The upc_memset function 49

UPC Language Specifications Version 1.3

7.3 UPC standard types <upc_types.h>

1 The <upc_types.h> header declares several standard types and value macros
used by other UPC libraries.

2 Unless otherwise noted, all of the types and macros specified in Section 7.3
are declared by the header <upc_types.h>.

3 The <upc_types.h> header shall constitute a strictly-conforming transla-
tion unit for an [ISO/IEC00] C compiler (ie one that lacks UPC language
extensions).

7.3.1 Operation designator (upc_op_t)

1 The <upc_types.h> header defines the type:

upc_op_t

which is an integer type whose values are used to designate a library operation
or set of operations.

2 The <upc_types.h> header defines the following macros, which expand to
integer constant expressions with type upc_op_t, which are suitable for use
in #if preprocessing directives. Each macro value designates the specified
operation. The expressions are defined such that bitwise or (|) of all com-
binations of the macros result in distinct positive values less than 65536.

Macro name Specified operation
UPC_ADD Addition
UPC_MULT Multiplication
UPC_AND Bitwise and (&)
UPC_OR Bitwise inclusive or (|)
UPC_XOR Bitwise exclusive or (∧)
UPC_LOGAND Logical and (&&)
UPC_LOGOR Logical or (||)
UPC_MIN Minimum value (op1<op2?op1:op2)
UPC_MAX Maximum value (op1>op2?op1:op2)

3 Extension libraries may define additional value macros of type upc_op_t, but
their values shall not conflict with those defined in <upc_types.h>.

50 UPC standard types <upc_types.h> §7.3

UPC Language Specifications Version 1.3

7.3.2 Type designator (upc_type_t)

1 The <upc_types.h> header defines the type:

upc_type_t

which is an integer type whose values are used to designate a language type.

2 The <upc_types.h> header defines the following macros, which expand to
integer constant expressions with type upc_type_t, distinct positive values
less than 65536, and which are suitable for use in #if preprocessing directives.
Each macro value designates the specified type.

Macro name Specified type
UPC_CHAR signed char
UPC_UCHAR unsigned char
UPC_SHORT short
UPC_USHORT unsigned short
UPC_INT int
UPC_UINT unsigned int
UPC_LONG long
UPC_ULONG unsigned long
UPC_LLONG long long
UPC_ULLONG unsigned long long
UPC_INT8 int8_t
UPC_UINT8 uint8_t
UPC_INT16 int16_t
UPC_UINT16 uint16_t
UPC_INT32 int32_t
UPC_UINT32 uint32_t
UPC_INT64 int64_t
UPC_UINT64 uint64_t
UPC_FLOAT float
UPC_DOUBLE double
UPC_LDOUBLE long double
UPC_PTS shared void *

3 Extension libraries may define additional value macros of type upc_type_t,
but their values shall not conflict with those defined in <upc_types.h>.

§7.3.2 Type designator (upc_type_t) 51

UPC Language Specifications Version 1.3

7.3.3 Synchronization flags (upc_flag_t)

1 The <upc_types.h> header defines the type:

upc_flag_t

which is an integer type.

2 The following macros are defined in <upc_types.h>:

UPC_OUT_ALLSYNC
UPC_OUT_MYSYNC
UPC_OUT_NOSYNC
UPC_IN_ALLSYNC
UPC_IN_MYSYNC
UPC_IN_NOSYNC

All expand to integer constant expressions with type upc_flag_t which are
suitable for use in #if preprocessing directives. The expressions are defined
such that bitwise or (|) of all combinations of the macros result in distinct
positive values less than 64.

3 The semantics of these macros are defined in Section 7.3.4.

7.3.4 Memory Semantics of Library Functions

1 upc_flag_t is an integral type defined in <upc_types.h> which is used to
control the data synchronization semantics of certain collective UPC library
functions. Values of function arguments having type upc_flag_t are formed
by or-ing together a constant of the form UPC_IN_XSYNC and a constant of
the form UPC_OUT_YSYNC, where X and Y may be NO, MY, or ALL.

2 If an argument of type upc_flag_t has value (UPC_IN_XSYNC | UPC_OUT_YSYNC),
then if X is

NO the function may begin to read or write data when the first thread has
entered the collective function call,

MY the function may begin to read or write only data which has affinity to
threads that have entered the collective function call, and

ALL the function may begin to read or write data only after all threads have

52 Synchronization flags (upc_flag_t) §7.3.3

UPC Language Specifications Version 1.3

entered the function call39

3 and if Y is

NO the function may read and write data until the last thread has returned
from the collective function call,

MY the function call may return in a thread only after all reads and writes of
data with affinity to the thread are complete40, and

ALL the function call may return only after all reads and writes of data are
complete.41

4 Passing UPC_IN_XSYNC alone has the same effect as (UPC_IN_XSYNC | UPC_OUT_ALLSYNC),
passing UPC_OUT_XSYNC alone has the same effect as (UPC_IN_ALLSYNC | UPC_OUT_XSYNC),
and passing 0 has the same effect as (UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC),
where X is NO, MY, or ALL.

39UPC_IN_ALLSYNC requires the function to guarantee that after all threads have entered
the function call all threads will read the same values of the input data.

40UPC_OUT_MYSYNC requires the function to guarantee that after a thread returns from
the function call the thread will not read any earlier values of the output data with affinity
to that thread.

41UPC_OUT_ALLSYNC requires the collective function to guarantee that after a thread
returns from the function call the thread will not read any earlier values of the output
data.

UPC_OUT_ALLSYNC is not required to provide an “implied" barrier. For example, if the
entire operation has been completed by a certain thread before some other threads have
reached their corresponding function calls, then that thread may exit its call.

§7.3.4 Memory Semantics of Library Functions 53

UPC Language Specifications Version 1.3

A Additions and Extensions

1 The UPC additions and extensions specification is divided into required
[UPC-LIB-REQ] and optional [UPC-LIB-OPT] library specifications. Re-
quired extensions shall be provided by a conformant UPC implementation,
while a conformant UPC implementation is not required to provide optional
extensions. The optional extensions specifications contains proposed addi-
tions and extensions to the UPC specification. Such proposals are included
when stable enough for developers to implement and for users to study and
experiment with them. However, their presence does not suggest long term
support. When fully stable and tested, they will be moved to the required
extensions specification.

2 This section also describes the process used to add new items to the addi-
tions and extensions specification, which starts with inclusion in the optional
extensions specification. Requirements for inclusion are:42

1. A documented API which shall use the format and conventions of this
specification and [ISO/IEC00].

2. Either a complete, publicly available, implementation of the API or
a set of publicly available example programs which demonstrate the
interface.

3. The concurrence of the UPC consortium that its inclusion would be in
the best interest of the language.

3 If all implementations drop support for an extension and/or all interested
parties no longer believe the extension is worth pursuing, then it may simply
be dropped. Otherwise, the requirements for inclusion of an extension in the
required extensions specification are:

1. Six months residence in the optional extensions specification.

2. The existence of either one (or more) publicly available "reference" im-
plementation written in standard UPC OR at least two independent

42These requirements ensure that most of the semantic issues that arise during initial
implementation have been addressed and prevents the accumulation of interfaces that no
one commits to implement. Nothing prevents the circulation of more informal what if
interface proposals from circulating in the community before an extension reaches this
point.

54 Additions and Extensions §A

UPC Language Specifications Version 1.3

implementations (possibly specific to a given UPC implementation).

3. The existence of a significant base of experimental user experience
which demonstrates positive results with a substantial portion of the
proposed API.

4. The concurrence of the UPC consortium that its inclusion would be in
the best interest of the language.

4 For each extension, there shall be a predefined feature macro beginning with
__UPC which will be defined by an implementation to be the interface version
of the extension if it is supported, otherwise undefined.

5 For each library extension, a separate header file whose name begins with
upc_ shall be specified. This header file shall be provided by an implemen-
tation if the extension is supported.

§A Additions and Extensions 55

UPC Language Specifications Version 1.3

B Formal UPC Memory Consistency Seman-
tics

1 The memory consistency model in a language defines the order in which the
results of write operations may be observed through read operations. The
behavior of a UPC program may depend on the timing of accesses to shared
variables, so in general a program defines a set of possible executions, rather
than a single execution. The memory consistency model constrains the set of
possible executions for a given program; the user may then rely on properties
that are true of all of those executions.

2 The memory consistency model is defined in terms of the read and write
operations issued by each thread in a naïve translation of the program, i.e.,
without any program transformations during translation, where each thread
issues operations as defined by the abstract machine defined in [ISO/IEC00
Sec. 5.1.2.3]. [ISO/IEC00 Sec. 5.1.2.3] allows a UPC implementation to
perform various program transformations to improve performance, provided
they are not visible to the programmer - specifically, provided those transfor-
mations do not affect the external behavior of the program. UPC extends this
constraint, requiring the set of externally-visible behaviors (the input/output
dynamics and volatile behavior defined in [ISO/IEC00 Sec. 5.1.2.3]) from
any execution of the transformed program be indistinguishable from those of
the original program executing on the abstract machine and adhering to the
memory consistency model as defined in this appendix.

3 This appendix assumes some familiarity with memory consistency models,
partial orders, and basic set theory.

B.1 Definitions

1 A UPC program execution is specified by a program text and a number of
threads, 𝑇 . An execution is a set of operations 𝑂, each operation being an
instance of some instruction in the program text. The set of operations issued
by a thread 𝑡 is denoted 𝑂𝑡. The program executes memory operations on a
set of variables (or locations) 𝐿. The set 𝑉 is the set of possible values that
can be stored in the program variables.

56 Formal UPC Memory Consistency Semantics §B

UPC Language Specifications Version 1.3

2 A memory operation in such an execution is given by a location 𝑙 ∈ 𝐿 to be
written or read and a value 𝑣 ∈ 𝑉 , which is the value to be written or the
value returned by the read. A memory operation 𝑚 in a UPC program has
one of the following forms, as defined in Section 3.7:

∙ a strict shared read, denoted SR(l,v)

∙ a strict shared write, denoted SW(l,v)

∙ a relaxed shared read, denoted RR(l,v)

∙ a relaxed shared write, denoted RW(l,v)

∙ a local read, denoted LR(l,v)

∙ a local write, denoted LW(l,v)

3 In addition, each memory operation 𝑚 is associated with exactly one of the
𝑇 threads, denoted 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚), and the accessor 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚) is defined to
return the location 𝑙 accessed by 𝑚.

4 Given a UPC program execution with 𝑇 threads, let 𝑀 ⊆ 𝑂 be the set of
memory operations in the execution and 𝑀𝑡 be the set of memory operations
issued by a given thread 𝑡. Each operation in 𝑀 is one of the above six types,
so the set 𝑀 is partitioned into the following six disjoint subsets:

∙ 𝑆𝑅(𝑀) is the set of strict shared reads in 𝑀

∙ 𝑆𝑊 (𝑀) is the set of strict shared writes in 𝑀

∙ 𝑅𝑅(𝑀) is the set of relaxed shared reads in 𝑀

∙ 𝑅𝑊 (𝑀) is the set of relaxed shared writes in 𝑀

∙ 𝐿𝑅(𝑀) is the set of local reads in 𝑀

∙ 𝐿𝑊 (𝑀) is the set of local writes in 𝑀

5 The set of all writes in 𝑀 is denoted as 𝑊 (𝑀):

𝑊 (𝑀) 𝑑𝑒𝑓

= 𝑆𝑊 (𝑀) ∪ 𝑅𝑊 (𝑀) ∪ 𝐿𝑊 (𝑀)

and the set of all strict accesses in 𝑀 is denoted as 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀):

𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) 𝑑𝑒𝑓

= 𝑆𝑅(𝑀) ∪ 𝑆𝑊 (𝑀)

§B.1 Definitions 57

UPC Language Specifications Version 1.3

B.2 Memory Access Model

1 Let 𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀), 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀), and 𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) be unordered
pairs of memory operations defined as:

𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀)𝑑𝑒𝑓

=

{︃
(𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒ 𝑚1 ̸= 𝑚2 ∧ 𝑚1 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) ∧

𝑚2 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)

}︃

𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)𝑑𝑒𝑓

=

⎧⎪⎨⎪⎩ (𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒⃒⃒ 𝑚1 ̸= 𝑚2 ∧

𝑇ℎ𝑟𝑒𝑎𝑑(𝑚1) = 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚2) ∧
(𝑚1 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) ∨ 𝑚2 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀))

⎫⎪⎬⎪⎭
𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)𝑑𝑒𝑓

= 𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀) ∪ 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

2 Thus, 𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀) is the set of all pairs of strict memory accesses, includ-
ing those between threads, and 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) is the set of all pairs
of memory accesses from the same thread in which at least one is strict.
𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) is their union, which intuitively is the set of operation pairs
for which all threads must agree upon a unique ordering (i.e. all threads
must agree on the directionality of each pair). In general, the determination
of that ordering will depend on the resolution of race conditions at runtime.

3 UPC programs must preserve the serial dependencies within each thread,
defined by the set of ordered pairs 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡):

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔(𝑀)𝑑𝑒𝑓

=

{︃
(𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚1) = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚2) ∧

(𝑚1 ∈ 𝑊 (𝑀) ∨ 𝑚2 ∈ 𝑊 (𝑀))

}︃

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) 𝑑𝑒𝑓
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⟨𝑚1, 𝑚2⟩

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑚1 ̸= 𝑚2 ∧
𝑇ℎ𝑟𝑒𝑎𝑑(𝑚1) = 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚2) ∧
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚1, 𝑚2) ∧(︃

(𝑚1, 𝑚2) ∈ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔(𝑀) ∨
(𝑚1, 𝑚2) ∈ 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

)︃
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

4 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡) establishes an ordering between operations issued
by a given thread 𝑡 that involve a data dependence (i.e. those operations in
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔(𝑀𝑡)) – this ordering is the one maintained by serial compilers
and hardware. 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡) additionally establishes an ordering
between operations appearing in 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡). In both cases, the

58 Memory Access Model §B.2

UPC Language Specifications Version 1.3

ordering imposed is the one dictated by 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚1, 𝑚2), a predicate which
intuitively is an ordering relationship defined by serial program order.43 It’s
important to note that 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡) intentionally avoids intro-
ducing ordering constraints between non-conflicting, non-strict operations
executed by a single thread (i.e. it does not impose ordering between a
thread’s relaxed/local operations to independent memory locations, or be-
tween relaxed/local reads to any location). As demonstrated in Section B.5,
this allows implementations to freely reorder any consecutive relaxed/local
operations issued by a single thread, except for pairs of operations accessing
the same location where at least one is a write; by design this is exactly
the condition that is enforced by serial compilers and hardware to main-
tain sequential data dependences – requiring any stronger ordering property
would complicate implementations and likely degrade the performance of re-
laxed/local accesses. The reason this flexibility must be directly exposed
in the model (unlike other program transformation optimizations which are
implicitly permitted by [ISO/IEC00 Sec. 5.1.2.3]) is because the results of
this reordering may be “visible" to other threads in the UPC program (as
demonstrated in Section B.5) and therefore could impact the program’s “in-
put/output dynamics".

5 A UPC program execution on 𝑇 threads with memory accesses 𝑀 is consid-
ered UPC consistent if there exists a partial order <𝑆𝑡𝑟𝑖𝑐𝑡 that provides an
orientation for each pair in 𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) and for each thread 𝑡, there exists
a total order <𝑡 on 𝑂𝑡 ∪ 𝑊 (𝑀) ∪ 𝑆𝑅(𝑀) (i.e. all operations issued by
thread 𝑡 and all writes and strict reads issued by any thread) such that:

1. <𝑡 defines a correct serial execution. In particular:

• Each read operation returns the value of the “most recent" pre-
ceding write to the same location, where “most recent" is defined
by <𝑡. If there is no prior write of the location in question, the
read returns the initial value of the referenced object as defined
by [ISO/IEC00 Sec. 6.7.8/7.2.0.3].44

43The formal definition of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠 is given in Section B.6.
44i.e. the initial value of an object declared with an initializer is the value given by the

initializer. Objects with static storage duration lacking an initializer have an initial value of
zero. Objects with automatic storage duration lacking an initializer have an indeterminate
(but fixed) initial value. The initial value for a dynamically allocated object is described
by the memory allocation function used to create the object.

§B.2 Memory Access Model 59

UPC Language Specifications Version 1.3

• The order of operations in 𝑂𝑡 is consistent with the ordering de-
pendencies in 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡).

2. <𝑡 is consistent with <𝑆𝑡𝑟𝑖𝑐𝑡. In particular, this implies that all threads
agree on a total order over the strict operations (𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)), and the
relative ordering of all pairs of operations issued by a single thread
where at least one is strict (𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)).

6 The set of <𝑡 orderings that satisfy the above constraints are said to be the
enabling orderings for the execution. An execution is UPC consistent if each
UPC thread has at least one such enabling ordering in this set. Conformant
UPC implementations shall only produce UPC consistent executions.

7 The definitions of 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) and <𝑡 provide well-defined con-
sistency semantics for local accesses to shared objects, making them behave
similarly to relaxed shared accesses. Note that private objects by defini-
tion may only be accessed by a single thread, and therefore local accesses to
private objects trivially satisfy the constraints of the model – provided the
serial data dependencies across sequence points mandated by [ISO/IEC00
Sec. 5.1.2.3] are preserved for the accesses to private objects on each thread.

B.3 Consistency Semantics of Standard Libraries and
Language Operations

B.3.1 Consistency Semantics of Synchronization Operations

1 UPC provides several synchronization operations in the language and stan-
dard library that can be used to strengthen the consistency requirements of
a program. Sections 7.2.4 and 6.6.1 define the consistency effects of these
operations in terms of a “null strict reference”. The formal definition pre-
sented here is operationally equivalent to that normative definition, but is
more explicit and therefore included here for completeness.

2 The memory consistency semantics of the synchronization operations are
defined in terms of equivalent accesses to a fresh variable 𝑙𝑠𝑦𝑛𝑐ℎ ∈ 𝐿 that
does not appear elsewhere in the program.45

45 Note: These definitions do not give the synchronization operations their synchronizing
effects – they only define the memory model behavior.

60 Consistency Semantics of Standard Libraries and
Language Operations §B.3

UPC Language Specifications Version 1.3

• A 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 statement implies a strict write followed by a strict read:
𝑆𝑊 (𝑙𝑠𝑦𝑛𝑐ℎ, 0) ; 𝑆𝑅(𝑙𝑠𝑦𝑛𝑐ℎ, 0)

• A 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 statement implies a strict write: 𝑆𝑊 (𝑙𝑠𝑦𝑛𝑐ℎ, 0) immedi-
ately after evaluation of the optional argument (if any) and before the
notification operation has been posted.

• A 𝑢𝑝𝑐_𝑤𝑎𝑖𝑡 statement implies a strict read: 𝑆𝑅(𝑙𝑠𝑦𝑛𝑐ℎ, 0) immediately
after the completion of the statement.

• A 𝑢𝑝𝑐_𝑙𝑜𝑐𝑘() call or a successful 𝑢𝑝𝑐_𝑙𝑜𝑐𝑘_𝑎𝑡𝑡𝑒𝑚𝑝𝑡() call implies a
strict read: 𝑆𝑅(𝑙𝑠𝑦𝑛𝑐ℎ, 0) immediately before return.

• A 𝑢𝑝𝑐_𝑢𝑛𝑙𝑜𝑐𝑘 call implies a strict write: 𝑆𝑊 (𝑙𝑠𝑦𝑛𝑐ℎ, 0) immediately
upon entry to the function.

3 The actual data values involved in these implied strict accesses is irrelevant.
The strict operations implied by the synchronization operations are present
only to serve as a consistency point, introducing orderings in <𝑆𝑡𝑟𝑖𝑐𝑡 that
restrict the relative motion in each <𝑡 of any surrounding non-strict accesses
to shared objects issued by the calling thread.

B.3.2 Consistency Semantics of Standard Library Calls

1 Many of the functions in the UPC standard library can be used to access
and modify data in shared objects, either non-collectively (e.g. 𝑢𝑝𝑐_𝑚𝑒𝑚-
{𝑝𝑢𝑡, 𝑔𝑒𝑡, 𝑐𝑝𝑦}) or collectively (e.g. 𝑢𝑝𝑐_𝑎𝑙𝑙_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡, etc). This section
defines the consistency semantics of the accesses to shared objects which are
implied to take place within the implementation of these library functions,
to provide well-defined semantics in the presence of concurrent explicit reads
and writes of the same shared objects. For example, an application which
calls a function such as 𝑢𝑝𝑐_𝑚𝑒𝑚𝑐𝑝𝑦 may need to know whether surrounding
explicit relaxed operations on non-conflicting shared objects could possibly
be reordered relative to the accesses that take place inside the library call.
This is a subtle but unavoidable aspect to the library interface which needs to
be explicitly defined to ensure that applications can be written with portably
deterministic behavior across implementations.

2 The following sections define the consistency semantics of shared accesses
implied by UPC standard library functions, in the absence of any explicit

§B.3.2 Consistency Semantics of Standard Library Calls 61

UPC Language Specifications Version 1.3

consistency specification for the given function (which would always take
precedence in the case of conflict).

B.3.2.1 Non-Collective Standard Library Calls

1 For non-collective functions in the UPC standard library (e.g. 𝑢𝑝𝑐_𝑚𝑒𝑚{𝑝𝑢𝑡, 𝑔𝑒𝑡, 𝑐𝑝𝑦}),
any implied data accesses to shared objects behave as a set of relaxed shared
reads and relaxed shared writes of unspecified size and ordering, issued by the
calling thread. No strict operations or fences are implied by a non-collective
library function call, unless explicitly noted otherwise.

2 EXAMPLE 1:

#include <upc_relaxed.h>

shared int x, y; // initial values are zero
shared [] int z[2]; // initial values are zero
int init_z[2] = { -3, -4 };
...
if (MYTHREAD == 0) {

x = 1;

upc_memput(z, init_z, 2*sizeof(int));

y = 2;
} else {

#pragma upc strict
int local_y = y;
int local_z1 = z[1];
int local_z0 = z[0];
int local_x = x;
...

}

In this example, all of the writes to shared objects are relaxed (including
the accesses implied by the library call), and thread 0 executes no strict
operations or fences which would inhibit reordering. Therefore, other threads
which are concurrently performing strict shared reads of the shared objects
(𝑥, 𝑦, 𝑧[0] and 𝑧[1]) may observe the updates occurring in any arbitrary order
that need not correspond to thread 0’s program order. For example, thread 1

62 Non-Collective Standard Library Calls §B.3.2.1

UPC Language Specifications Version 1.3

may observe a final result of 𝑙𝑜𝑐𝑎𝑙_𝑦 == 2, 𝑙𝑜𝑐𝑎𝑙_𝑧1 == −4, 𝑙𝑜𝑐𝑎𝑙_𝑧0 == 0
and 𝑙𝑜𝑐𝑎𝑙_𝑥 == 0, or any other permutation of old and new values for the
result of the strict shared reads. Furthermore, because the shared writes
implied by the library call have unspecified size, thread 1 may even read
intermediate values into 𝑙𝑜𝑐𝑎𝑙_𝑧0 and 𝑙𝑜𝑐𝑎𝑙_𝑧1 which correspond to neither
the initial nor the final values for those shared objects.46 Finally, note that
all of these observations remain true even if 𝑧 had instead been declared as:

strict shared [] int z[2];

because the consistency qualification used on the shared object declarator is
irrelevant to the operation of the library call, whose implied shared accesses
are specified to always behave as relaxed shared accesses.

3 If 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operations were inserted in the blank lines immediately preced-
ing and following the 𝑢𝑝𝑐_𝑚𝑒𝑚𝑝𝑢𝑡 invocation in the example above, then
<𝑆𝑡𝑟𝑖𝑐𝑡 would imply that all reading threads would be guaranteed to observe
the shared writes according to thread 0’s program order. Specifically, any
thread reading a non-initial value into 𝑙𝑜𝑐𝑎𝑙_𝑦 would be guaranteed to read
the final values for all the other shared reads, and any thread reading the
initial zero value into 𝑙𝑜𝑐𝑎𝑙_𝑥 would be guaranteed to also have read the
initial zero values for all the other shared reads.47 Explicit use of 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒
immediately preceding and following non-collective library calls operating
on shared objects is the recommended method for ensuring ordering with re-
spect to surrounding relaxed operations issued by the calling thread, in cases
where such ordering guarantees are required for program correctness.

B.3.2.2 Collective Standard Library Calls

1 For collective functions in the UPC standard library, any implied data ac-
cesses to shared objects behave as a set of relaxed shared reads and relaxed
shared writes of unspecified size and ordering, issued by one or more unspec-
ified threads (unless explicitly noted otherwise).

2 For collective functions in the UPC standard library that take a 𝑢𝑝𝑐_𝑓𝑙𝑎𝑔_𝑡

46This is a consequence of the byte-oriented nature of shared data movement functions
(which is assumed in the absence of further specification) and is orthogonal to the issue
of write atomicity.

47However, for threads reading the initial value into 𝑙𝑜𝑐𝑎𝑙_𝑦 and the final value into
𝑙𝑜𝑐𝑎𝑙_𝑥, the writes to 𝑧[0] and 𝑧[1] could still appear to have been arbitrarily reordered
or segmented, leading to indeterminate values in 𝑙𝑜𝑐𝑎𝑙_𝑧0 and 𝑙𝑜𝑐𝑎𝑙_𝑧1.

§B.3.2.2 Collective Standard Library Calls 63

UPC Language Specifications Version 1.3

argument (e.g. 𝑢𝑝𝑐_𝑎𝑙𝑙_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡), one or more 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operations may
be implied upon entry and/or exit to the library call, based on the flags
selected in the value of the 𝑢𝑝𝑐_𝑓𝑙𝑎𝑔_𝑡 argument, as follows:

• UPC_IN_ALLSYNC and UPC_IN_MYSYNC imply a 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operation on
each calling thread, immediately upon entry to the library function call.

• UPC_OUT_ALLSYNC and UPC_OUT_MYSYNC imply a 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operation
on each calling thread, immediately before return from the library func-
tion call.

• No fence operations are implied by UPC_IN_NOSYNC or UPC_OUT_NOSYNC.

3 The 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operations implied by the rules above are sufficient to en-
sure the results one would naturally expect in the presence of relaxed or
local accesses to shared objects issued immediately preceding or following
an ALLSYNC or MYSYNC collective library call that accesses the same shared
objects. Without such fences, nothing would prevent prior or subsequent
non-strict operations issued by the calling thread from being reordered rel-
ative to some of the accesses implied by the library call (which might not
be issued by the current thread), potentially leading to very surprising and
unintuitive results. The NOSYNC flag provides no synchronization guarantees
between the execution stream of the calling thread and the shared accesses
implied by the collective library call, therefore no additional fence operations
are required.48

B.4 Properties Implied by the Specification

1 The memory model definition is rather subtle in some points, but as de-
scribed in Section 5.1.2.3, most programmers need not worry about these
details. There are some simple properties that are helpful in understanding
the semantics.49 The first property is:

48Any deterministic program which makes use of NOSYNC collective data movement func-
tions is likely to be synchronizing access to shared objects via other means – for example,
through the use of explicit 𝑢𝑝𝑐_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 or ALLSYNC/MYSYNC collective calls that already
provide sufficient synchronization and fences.

49Note the properties described in this section and in Section 5.1.2.3 apply only to
programs which are “conforming” as defined by [ISO/IEC00 Sec. 4] – namely, those where
no thread performs an operation which is labelled as having undefined behavior (e.g.
dereferencing an uninitialized pointer).

64 Properties Implied by the Specification §B.4

UPC Language Specifications Version 1.3

• A UPC program which accesses shared objects using only strict oper-
ations50 will be sequentially consistent.

2 This property is trivially true due to the global total order that <𝑆𝑡𝑟𝑖𝑐𝑡 im-
poses over strict operations (which is respected in every thread’s <𝑡), but
may not very useful in practice – because the exclusive use of strict op-
erations for accessing shared objects may incur a noticeable performance
penalty. Nevertheless, this property may still serve as a useful debugging
mechanism, because even in the presence of data races a fully strict program
is guaranteed to only produce behaviors allowed under sequential consistency
[Lam79], which is generally considered the simplest parallel memory model
to understand and the one which naïve programmers typically assume.

3 Of more interest is that programs free of race conditions will also be sequen-
tially consistent. This requires a more formal definition of race condition,
because programmers may believe their program is properly synchronized
using memory operations when it is not.

4 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) is defined as a set of unordered pairs (𝑚1, 𝑚2):

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀)𝑑𝑒𝑓

=

⎧⎪⎨⎪⎩(𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒⃒⃒ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚1) = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚2) ∧

𝑇ℎ𝑟𝑒𝑎𝑑(𝑚1) ̸= 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚2) ∧
(𝑚1 ∈ 𝑊 (𝑀) ∨ 𝑚2 ∈ 𝑊 (𝑀))

⎫⎪⎬⎪⎭
5 An execution is race-free if every (𝑚1, 𝑚2) ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) is ordered

by <𝑆𝑡𝑟𝑖𝑐𝑡. i.e. an execution is race-free if and only if:

∀(𝑚1, 𝑚2) ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) : (𝑚1 <𝑆𝑡𝑟𝑖𝑐𝑡 𝑚2) ∨ (𝑚2 <𝑆𝑡𝑟𝑖𝑐𝑡 𝑚1)

6 Note this implies that all threads 𝑡 and all enabling orderings <𝑡 agree upon
the ordering of each (𝑚1, 𝑚2) ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) (so there is no race).
These definitions allow us to state a very useful property of UPC programs:

• A program that produces only race-free executions will be sequentially
consistent.

7 Note that UPC locks and barriers constrain 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠 as one would ex-
pect, because these synchronization primitives imply strict operations which
introduce orderings in <𝑆𝑡𝑟𝑖𝑐𝑡 for the operations in question.

50i.e. no relaxed shared accesses, and no accesses to shared objects via pointers-to-local

§B.4 Properties Implied by the Specification 65

UPC Language Specifications Version 1.3

B.5 Examples

1 The subsequent examples demonstrate the semantics of the memory model
by presenting hypothetical execution traces and explaining how the memory
model either allows or disallows the behavior exhibited in each trace. The
examples labelled “disallowed” denote a trace which is not UPC consistent
and therefore represent a violation of the specified memory model. Such
an execution trace shall never be generated by a conforming UPC imple-
mentation. The examples labelled “allowed” denote a trace which is UPC
consistent and therefore represent a permissible execution that satisfies the
constraints of the memory model. Such an execution trace may be generated
by a conforming UPC implementation.51

2 In the figures below, each execution is shown by the linear graph which is the
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() program order for each thread, generated by an execution of the
source program on the abstract machine. Pairs of memory operations that
are ordered by the global ordering over memory operations in 𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)
(i.e. 𝑚1 <𝑆𝑡𝑟𝑖𝑐𝑡 𝑚2) are represented as 𝑚1 ⇒ 𝑚2. All threads must agree
upon the relative ordering imposed by these edges in their <𝑡 orderings. Pairs
ordered by a thread 𝑡 as in 𝑚1 <𝑡 𝑚2 are represented by 𝑚1 → 𝑚2.
Arcs that are implied by transitivity are omitted. Assume all variables are
initialized to 0.

3 EXAMPLE 1: Allowed behavior that would not be allowed under sequen-
tial consistency. There are only relaxed operations, so threads need not ob-
serve the program order of other threads. Because all operations are relaxed,
there are no ⇒ orderings between operations.

𝑇0: RR(x,1); RW(x,2)
𝑇1: RR(x,2); RW(x,1)

51The memory model specifies guarantees which must be true of any conformant UPC
implementation and therefore may be portably relied upon by users. A given UPC im-
plementation may happen to provide guarantees which are stronger than those required
by the model, thus in general the set of behaviors which can be generated by conformant
implementation will be a subset of those behaviors permitted by the model.

66 Examples §B.5

UPC Language Specifications Version 1.3

<0: 𝑅𝑅(𝑥, 1) // 𝑅𝑊 (𝑥, 2)

𝑅𝑊 (𝑥, 1)

ff
𝑇0 observes 𝑇1’s write happening before
its own read.

<1: 𝑅𝑊 (𝑥, 2)

xx
𝑅𝑅(𝑥, 2) // 𝑅𝑊 (𝑥, 1)

𝑇1 must observe its own program order
for conflicting operations, but it sees 𝑇0’s
write as the first operation.

Note that relaxed reads issued by thread 𝑡 only appear in the <𝑡 of that
thread.

4 EXAMPLE 2: Disallowed behavior which is the same as the previous
example, but with all accesses made strict. All edges in the graph below
must therefore be ⇒ edges. This also implies the program order edges must
be observed in <𝑆𝑡𝑟𝑖𝑐𝑡 and the two threads must agree on the order of the
races. The use of unique values in the writes for this example forces an
orientation of the cross-thread edges, so an acyclic <𝑆𝑡𝑟𝑖𝑐𝑡 cannot be defined
that satisfies the write-to-read data flow requirements for a valid <𝑡.

𝑇0: SR(x,1); SW(x,2)
𝑇1: SR(x,2); SW(x,1)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑆𝑅(𝑥, 1) +3 𝑆𝑊 (𝑥, 2)

t|
𝑆𝑅(𝑥, 2) +3 𝑆𝑊 (𝑥, 1)

bj
All of the edges shown are required, but this
is not a valid <𝑆𝑡𝑟𝑖𝑐𝑡, since it contains a cycle.

5 EXAMPLE 3: Allowed behavior that would be disallowed (as in the first
example) if all of the accesses were strict. Again one thread may observe the
other’s operations happening out of program order. This is the pattern of
memory operations that one might see with a spin lock, where 𝑦 is the lock
protecting the variable 𝑥. The implication is that UPC programmers should
not build synchronization out of relaxed operations.

§B.5 Examples 67

UPC Language Specifications Version 1.3

𝑇0: RW(x,1); RW(y,1)
𝑇1: RR(y,1); RR(x,0)

<0: 𝑅𝑊 (𝑥, 1) // 𝑅𝑊 (𝑦, 1) 𝑇0 observes only its own writes.
The writes are non-conflicting, so either or-
dering constitutes a valid <0.

<1: 𝑅𝑊 (𝑥, 1) 𝑅𝑊 (𝑦, 1)

xx
𝑅𝑅(𝑦, 1) // 𝑅𝑅(𝑥, 0)

ff
To satisfy write-to-read data flow in <1,
RW(x,1) must follow RR(x,0) and RR(y,1)
must follow RW(y,1). There are three
other valid <1 orderings which satisfy these
constraints.

6 EXAMPLE 4: Allowed behavior that would be disallowed under sequential
consistency. This example is similar to the previous ones, but involves a read-
after-write on each processor. Neither thread sees the update by the other,
but in the <𝑡 orderings, each thread conceptually observes the other thread’s
operations happening out of order.

𝑇0: RW(x,1); RR(y,0)
𝑇1: RW(y,1); RR(x,0)

<0: 𝑅𝑊 (𝑥, 1) // 𝑅𝑅(𝑦, 0)

xx
𝑅𝑊 (𝑦, 1)

The only constraint on <0 is RW(y,1) must
follow RR(y,0). Several other valid <0 or-
derings are possible.

<1: 𝑅𝑊 (𝑥, 1)

𝑅𝑊 (𝑦, 1) // 𝑅𝑅(𝑥, 0)

ff
Analogous situation with a write-after-
read, this time on x. Several other valid
<1 orderings are possible.

7 EXAMPLE 5: Disallowed behavior because with strict accesses, one of
the two writes must “win” the race condition. Each thread observes the other
thread’s write happening after its own write, which creates a cycle when one
attempts to construct <𝑆𝑡𝑟𝑖𝑐𝑡.

68 Examples §B.5

UPC Language Specifications Version 1.3

𝑇0: SW(x,2); SR(x,1)
𝑇1: SW(x,1); SR(x,2)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑆𝑊 (𝑥, 2)
KS

��

+3 𝑆𝑅(𝑥, 1)

𝑆𝑊 (𝑥, 1) +3 𝑆𝑅(𝑥, 2)

8 EXAMPLE 6: Allowed behavior where a thread observes its own reads
occurring out-of-order. Reordering of reads is commonplace in serial com-
pilers/hardware, but in this case an intervening modification by a different
thread makes this reordering visible. Strengthening the model to prohibit
such reordering of relaxed reads to the same location would impose serious
restrictions on the implementation of relaxed reads that would likely degrade
performance - for example, under such a model an optimizer could not re-
order the reads in this example (or allow them to proceed as concurrent
non-blocking operations if they might be reordered in the network) unless it
could statically prove the reads were to different locations or no other thread
was writing the location.

𝑇0: RW(x,1); SW(y,1); RW(x,2)
𝑇1: RR(x,2); RR(x,1)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑅𝑊 (𝑥, 1) +3 𝑆𝑊 (𝑦, 1) +3 𝑅𝑊 (𝑥, 2) 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2) <0 conforms to <𝑆𝑡𝑟𝑖𝑐𝑡

<1: 𝑅𝑊 (𝑥, 1) +3

&&

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2)

ss
𝑅𝑅(𝑥, 2) 𝑅𝑅(𝑥, 1)

OO
<1 conforms to <𝑆𝑡𝑟𝑖𝑐𝑡. T1’s oper-
ations on x do not conflict because
they are both reads, and hence may
appear relatively reordered in <1.
One other <1 ordering is possible.

§B.5 Examples 69

UPC Language Specifications Version 1.3

9 EXAMPLE 7: Disallowed behavior similar to the previous example, but
in this case the addition of a relaxed write on thread 1 introduces dependen-
cies in 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1), such that (all else being equal) the model
requires T1’s second read to return the value 3. If T1’s write were to any
location other than x, the behavior shown would be allowed.

𝑇0: RW(x,1); SW(y,1); RW(x,2)
𝑇1: RR(x,2); RW(x,3); RR(x,1)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑅𝑊 (𝑥, 1) +3 𝑆𝑊 (𝑦, 1) +3 𝑅𝑊 (𝑥, 2) 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2)

xx
𝑅𝑊 (𝑥, 3)

<0 conforms to <𝑆𝑡𝑟𝑖𝑐𝑡. Other or-
derings are possible.

<1: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2)

ss
𝑅𝑅(𝑥, 2) // 𝑅𝑊 (𝑥, 3) // 𝑅𝑅(𝑥, ?)

This is the only <1 that
conforms to <𝑆𝑡𝑟𝑖𝑐𝑡 and
𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1). The
second read of x cannot return 1 -
it must return 3.

10 EXAMPLE 8: Disallowed behavior demonstrating why strict reads appear
in every <𝑡, rather than just for the thread that issued them. If the strict
reads were absent from <0, this behavior would be allowed.

𝑇0: RW(x,1); RW(x,2)
𝑇1: SR(x,2); SR(x,1)

70 Examples §B.5

UPC Language Specifications Version 1.3

<𝑆𝑡𝑟𝑖𝑐𝑡:

𝑆𝑅(𝑥, 2) +3 𝑆𝑅(𝑥, 1)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) // 𝑅𝑊 (𝑥, 2)

xx
𝑆𝑅(𝑥, 2) +3

**
𝑆𝑅(𝑥, ?)

This is the only <0 that
conforms to <𝑆𝑡𝑟𝑖𝑐𝑡 and
𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0). The
second read of x cannot return 1 -
it must return 2.

11 EXAMPLE 9: Allowed behavior similar to the previous example, but the
writes are no longer conflicting, and therefore not ordered by 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0).

𝑇0: RW(x,1); RW(y,1)
𝑇1: SR(y,1); SR(x,0)

<𝑆𝑡𝑟𝑖𝑐𝑡:

𝑆𝑅(𝑦, 1) +3 𝑆𝑅(𝑥, 0)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0, <1: 𝑅𝑊 (𝑥, 1) 𝑅𝑊 (𝑦, 1)

xx
𝑆𝑅(𝑦, 1) +3

**
𝑆𝑅(𝑥, 0)

ff
The writes are non-conflicting,
therefore not ordered by
𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0).

12 EXAMPLE 10: Allowed behavior Another example of a thread observing
its own relaxed reads out of order, regardless of location accessed.

𝑇0: RW(x,1); SW(y,1)
𝑇1: RR(y,1); RR(x,1); RR(x,0)

§B.5 Examples 71

UPC Language Specifications Version 1.3

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑅𝑊 (𝑥, 1) +3 𝑆𝑊 (𝑦, 1) 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) Relaxed reads from thread 1 do not
appear in <0

<1: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1)

xx
𝑅𝑅(𝑦, 1) // 𝑅𝑅(𝑥, 1) 𝑅𝑅(𝑥, 0)

kk
Relaxed reads have been re-
ordered. Other <1 orders
are possible.

13 EXAMPLE 11: Disallowed behavior demonstrating that a barrier syn-
chronization orders relaxed operations as one would expect.

𝑇0: RW(x,1); upc_notify; upc_wait
𝑇1: upc_notify; upc_wait; RR(x,0)

<𝑆𝑡𝑟𝑖𝑐𝑡:
𝑅𝑊 (𝑥, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦

(= 𝑆𝑊*)
+3

�� !)

𝑢𝑝𝑐_𝑤𝑎𝑖𝑡
(= 𝑆𝑅*)

𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3

5=

𝑢𝑝𝑐_𝑤𝑎𝑖𝑡
(= 𝑆𝑅*)

+3

KS

𝑅𝑅(𝑥, 0)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) and the
synchronization semantics of
barrier imply that <𝑆𝑡𝑟𝑖𝑐𝑡 must
respect all the edges shown.52

There is no valid <1 which respects <𝑆𝑡𝑟𝑖𝑐𝑡 – write-to-read data flow along
the chain 𝑅𝑊 (𝑥, 1) ⇒ 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 ⇒ 𝑢𝑝𝑐_𝑤𝑎𝑖𝑡 ⇒ 𝑅𝑅(𝑥, 0) implies the
read must return 1 (i.e. because 𝑅𝑊 (𝑥, 1) <𝑆𝑡𝑟𝑖𝑐𝑡 𝑅𝑅(𝑥, 0) and there are no
intervening writes of x).

14 EXAMPLE 12: Disallowed behavior <𝑆𝑡𝑟𝑖𝑐𝑡 is an ordering over the pairs in
𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀), which includes an edge between two 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations.
Every <𝑡 must conform to a single <𝑆𝑡𝑟𝑖𝑐𝑡 ordering – all threads agree on a

52except for the edge between the 𝑢𝑝𝑐_𝑤𝑎𝑖𝑡 operations and the edge between the
𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations, both of which can point either way.

72 Examples §B.5

UPC Language Specifications Version 1.3

single total order over 𝑆𝑅(𝑀) ∪ 𝑆𝑊 (𝑀) in general, and in particular they
all agree on the order of 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations. Therefore, at least one of
the read operations must return 1.

𝑇0: RW(x,1); upc_notify; RR(y,0); (upc_wait not shown)
𝑇1: RW(y,1); upc_notify; RR(x,0); (upc_wait not shown)

<𝑆𝑡𝑟𝑖𝑐𝑡:
𝑅𝑊 (𝑥, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦

(= 𝑆𝑊*)
+3

��

𝑅𝑅(𝑦, 0)

𝑅𝑊 (𝑦, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3 𝑅𝑅(𝑥, 0)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies these
edges in 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) must be
respected by <𝑆𝑡𝑟𝑖𝑐𝑡.53

<0: 𝑅𝑊 (𝑥, 1) +3
--
𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3

��

**
𝑅𝑅(𝑦, 0)

tt
𝑅𝑊 (𝑦, 1) +3

--
𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

<1: 𝑅𝑊 (𝑥, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

��

𝑅𝑊 (𝑦, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3 𝑅𝑅(𝑥, 0) Read cannot return 0.

There is no valid <1 which respects <𝑆𝑡𝑟𝑖𝑐𝑡 – write-to-read data flow along
the chain 𝑅𝑊 (𝑥, 1) ⇒ 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 ⇒ 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 ⇒ 𝑅𝑅(𝑥, 0) implies the
read must return 1 (i.e. because 𝑅𝑊 (𝑥, 1) <𝑆𝑡𝑟𝑖𝑐𝑡 𝑅𝑅(𝑥, 0) and there are
no intervening writes of x). Reversing the edge between the 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
operations in <𝑆𝑡𝑟𝑖𝑐𝑡 causes an analogous problem for y in <0.

53except the edge between the 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations, which can point either way.

§B.5 Examples 73

UPC Language Specifications Version 1.3

B.6 Formal Definition of Precedes

1 This section outlines a formal definition for the 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚1, 𝑚2) partial
order, a predicate which inspects two memory operations in the execution
trace that were issued by the same thread and returns true if and only if 𝑚1
is required to precede 𝑚2, according to the sequential abstract machine se-
mantics of [ISO/IEC00 Sec. 5.1.2.3], applied to the given thread. Intuitively,
this partial order serves to constrain legal serial program behavior based on
the order of the statements a programmer wrote in the source program. For
most purposes, it is sufficient to rely upon an intuitive understanding of se-
quential program order when interpreting the behavior of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() in the
memory model - this section provides a more concrete definition which may
be useful to compiler writers.

2 In general, the memory model affects the instructions which are issued (and
therefore, the illusory “program order", if we were endeavoring to construct
a total order on memory operations given only a static program). Luckily,
providing a functional definition for 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() does not require us to embark
on the problematic exercise of defining a totally-ordered “program order" of
legal executions based only on the static program. All that’s required is a
way to determine after-the-fact (i.e. given an execution trace) whether two
memory operations that did execute on a single thread were generated by
source-level operations that are required to have a given ordering by the
sequential abstract machine semantics. Finally, note that 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() is a
partial order and not a total order - two accesses from a given thread which
are not separated by a sequence point in the abstract machine semantics will
not be ordered by 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() (and by extension, their relative order will not
be constrained by the memory model).

3 Given any memory access in the trace, it is assumed that we can decide
uniquely which source-level operation generated the access. One mechanism
for providing this mapping would be to attach an abstract “source line num-
ber" tag to every memory access indicating the source-level operation that
generated it.54

54Compiler optimizations which coalesce accesses or remove them entirely are orthogonal
to this discussion - specifically, the correctness of such optimizations are defined in terms
of a behavioral equivalence to the unoptimized version. Therefore, as far as the memory
model is concerned, every operation in the execution trace is guaranteed to map to a
unique operation at the source level.

74 Formal Definition of Precedes §B.6

UPC Language Specifications Version 1.3

In practice, this abstract numbering needs to be slightly different from actual
source line number because the user may have broken a line in the middle
of an expression where the abstract machine guarantees no ordering - but
we can conceptually add or remove line breaks as necessary to make the line
numbers match up with abstract machine sequence points without changing
the meaning of the program (ie whitespace is not significant). Also, without
lack of generality we can assume the program consists only of a single UPC
source file, and therefore the numbering within this file covers every access
the program could potentially execute.55

4 Now, notice that given the numbering and mapping above, we could imme-
diately define an adequate 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() relation if our program consisted of
only straight-line code (ie a single basic block in CFG terminology). Specif-
ically, in the absence of branches there is no ambiguity about how to define
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() - a simple integer less-than (<) comparison of the line number
tags is sufficient.

Additionally, notice that a program containing only straight-line code and
forward branches can also easily be incorporated in this approach (ie the
CFG for our program is a DAG). In this case, the basic blocks can be ar-
ranged such that abstract machine execution always proceeds through line
numbers in monotonically non-decreasing order, so a simple integer less-than
(<) comparison of the line number tags attached to the dynamic operations
is still a sufficient definition for 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠.

5 Obviously we want to also describe the behavior of programs with backward
branches. We handle them by defining a sequence of abstract rewriting oper-
ations on the original program that generate a new, simplified representation
of the program with equivalent abstract machine semantics but without any
backward branches (so we reduce to the case above). Here are the rewriting
steps on the original program:

Step 1. Translate all the high-level control-flow constructs in the program
into straight-line code with simple conditional or unconditional branches.
Lower all compound expressions into “simple expressions" with equivalent
semantics, introducing private temporary variables as necessary. Each “sim-
ple expression" should involve at most one memory access to a location in

55Multi-file programs are easily accomodated by stating the source files are all concate-
nated together into a single master source file for the purposes of defining 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠.

§B.6 Formal Definition of Precedes 75

UPC Language Specifications Version 1.3

the original program. Order the simple expressions such that the abstract
machine semantics of the original program are preserved, placing line breaks
as required to respect sequence point boundaries. In cases where the abstract
machine semantics leave evaluation order unspecified, place the relevant sim-
ple expressions on the same line.

At this point rewritten program code consists solely of memory operations,
arithmetic expressions, built-in operations (like 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦), and conditional
or unconditional goto operations. For example this program:

1: i = 0;
2: while (i < 10) {
3: A[i] = i;
4: i = i + 1;
5: }
6: A[10] = -1;

Conceptually becomes:

1: i = 0;
2: if (i >= 10) goto 6;
3: tmp_1 = i; A[i] = tmp_1;
4: tmp_2 = i; i = tmp_2 + 1;
5: goto 2;
6: A[10] = -1;

The translation for the other control-flow statements is similarly straightfor-
ward and well-documented in the literature of assembly code generation tech-
niques for C-like languages. All control flow (including function call/return,
setjmp/longjmp, etc) can be represented as (un)conditional branches in this
manner. Call this rewritten representation the step-1 program.

Step 2. Compute the maximum line number (𝑀𝐿𝑁) of the step-1 program
(𝑀𝐿𝑁 = 6 in the example). Clone the step-1 program an infinite number
of times and concatenate the copies together, adjusting the line numbering
for the 2nd and subsequent copies appropriately (note, this is an abstract
transformation, so the infinite length of the result is not a practical issue).
While cloning, rewrite all the goto operations as follows:

For a goto operation in copy 𝐶 of the step-1 program (zero-based numbering),
which is a copy of line number 𝑁 in the step-1 program and targeting original

76 Formal Definition of Precedes §B.6

UPC Language Specifications Version 1.3

line number 𝑇 :

if (T > N) set goto target = C*MLN + T // step-1 forward branch
else set goto target = (C+1)*MLN + T // step-1 backward branch

In other words, step-1 forward branches branch to the same relative place
in the current copy of the step-1 program, and backward branches become
forward branches to the next copy of the step-1 program. So our example
above conceptually becomes:

1: i = 0;
2: if (i >= 10) goto 6;
3: tmp_1 = i; A[i] = tmp_1;
4: tmp_2 = i; i = tmp_2 + 1;
5: goto 8; // rewritten backward goto
6: A[10] = -1;

7: i = 0;
8: if (i >= 10) goto 12; // rewritten forward goto
9: tmp_1 = i; A[i] = tmp_1;
10: tmp_2 = i; i = tmp_2 + 1;
11: goto 14; // rewritten backward goto
12: A[10] = -1;

13: i = 0;
...

After this transformation, all branches are forward branches. Now, the mem-
ory model describes behavior of the step-2 rewritten program, and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠()
is defined as a simple integer less-than (<) comparison of the step-2 program’s
line number tags attached to any two given memory accesses in the execution
trace.

§B.6 Formal Definition of Precedes 77

UPC Language Specifications Version 1.3

C UPC versus C Standard Section Number-
ing

UPC spec section ISO/IEC 9899 section Description
1 1 Scope
2 2 Normative references
3 3 Terms, definitions and symbols
4 4 Conformance
5 5 Environment
6 6 Language

6.1 6.1 Notations
6.2 6.4.1 Keywords
6.3 6.4.2.2 Predefined identifiers

6.4.1 6.5.3 Unary operators
6.4.2 6.5.6 Pointer-to-shared arithmetic
6.4.3 6.5.4/6.5.16 Cast and assignment expressions
6.4.4 6.5.3.2 Address operators
6.5 6.7 Declarations

6.5.1 6.7.3 Type qualifiers
6.5.2 6.7.5 Declarators

6.5.2.1 6.7.5.2 Array declarators
6.6 6.8 Statements and blocks

6.6.2 6.8.5 Iteration statements
6.7 6.10 Preprocessing directives

6.7.1 6.10.6 Pragma directive
6.7.2 6.10.8 Predefined macro names

7 7 Library
7.1 7.1.2 Standard headers

Table A1. Mapping UPC spec sections to ISO/IEC 9899 sections

78 UPC versus C Standard Section Numbering §C

UPC Language Specifications Version 1.3

References

[CAG93] David E. Culler, Andrea C. Arpaci-Dusseau, Seth Copen Goldstein,
Arvind Krishnamurthy, Steven Lumetta, Thorsten von Eicken, Katherine A.
Yelick. Parallel programming in Split-C, Proceedings of Supercomputing
1993, p. 262-273.

[CDC99] W. W. Carlson, J. M. Draper, D.E. Culler, K. Yelick, E. Brooks,
and K. Warren. Introduction to UPC and Language Specification. CCS-TR-
99-157. IDA/CCS, Bowie, Maryland. May, 1999.

[ISO/IEC00] ISO/IEC. Programming Languages-C. ISO/IEC 9899. May,
2000.

[Lam79] L. Lamport. How to make a Multicomputer that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690-69,
September 1979.

[MPI2] MPI-2: Extensions to the Message-Passing Interface, Message Pass-
ing Interface Forum, July 18, 1997.

References 79

UPC Language Specifications Version 1.3

Index

__UPC_DYNAMIC_THREADS__,
36

__UPC_STATIC_THREADS__, 36
__UPC_VERSION__, 35
__UPC__, 35

access, 9
affinity, 9, 19, 41
AllStrict, 58

barriers, 30
block size, 16, 22
block size, automatically-computed, 24
block size, conversion, 21
block size, declaration, 26
block size, default, 24
block size, definite, 24
block size, indefinite, 24
blocking factor, 24

collective, 10, 30, 37
Conflicting, 58
continue, 32

data races, 13
definite block size, 24, 25
DependsOnThreads, 58
dynamic THREADS environment, 12,

27, 36

exit, 13

feature macros, 55

global address space, 6

header files, 55

implicit barriers, 12, 30
indefinite, 25
indefinite block size, 24
ISO C, 6, 7

keywords, 15

local access, 10
locks, 43

main, 12
memory allocation, 38
memory consistency, 13, 30, 52, 56
memory consistency, barriers, 60
memory consistency, collective library,

63
memory consistency, examples, 66
memory consistency, fence, 60
memory consistency, locks, 60
memory consistency, non-collective li-

brary, 62
memory copy, 47
mutual exclusion, 43
MYTHREAD, 15, 16, 36

null strict access, 30

object, 8

parallel loop, 32
phase, 11, 19, 41
pointer addition, 19
pointer equality, 19
pointer subtraction, 19
pointer-to-local, 9, 19
pointer-to-shared, 9, 19

80 Index

UPC Language Specifications Version 1.3

pointer-to-shared, casts, 21
pointer-to-shared, conversion, 21
pointer-to-shared, generic, 21
pointer-to-shared, null, 21
pointer-to-shared, type compatibility,

25
PotentialRaces, 65
pragmas, 35
Precedes, 74
predefined macros, 35
private object, 8
program order, 13, 74
program startup, 12
program termination, 13
proposed extensions, 54

relaxed, 15, 22, 23, 35
relaxed shared read, 10, 13, 35, 56
relaxed shared write, 10, 13, 35, 56

sequential consistency, 13, 64
shared, 15
shared access, 10, 13, 35, 56
shared array, 9
shared declarations, array, 27
shared declarations, examples, 25, 28
shared declarations, restrictions, 27
shared declarations, scalar, 27
shared layout qualifier, 23
shared object, 8
shared object, allocation, 38
shared object, clearing, 48
shared object, copying, 47
shared type, 8
single-valued, 11
sizeof, 17
static THREADS environment, 12, 27,

36

strict, 15, 22, 23, 35
strict shared read, 10, 13, 35, 56
strict shared write, 10, 13, 35, 56
StrictOnThreads, 58
StrictPairs, 58
struct field, address-of, 22
synchronization, 10, 30, 43
synchronization phase, 30

thread, 7
thread creation, 12
THREADS, 15, 16, 36
tokens, 15

ultimate element type, 7
UPC, 6
UPC Optional Library, 7
UPC Required Library, 7
UPC_ADD, 50
upc_addrfield, 19, 42
upc_affinitysize, 42
upc_all_alloc, 39
upc_all_free, 40
upc_all_lock_alloc, 44
upc_all_lock_free, 44
upc_alloc, 39
UPC_AND, 50
upc_barrier, 15, 30
upc_blocksizeof, 15, 18
UPC_CHAR, 51
UPC_DOUBLE, 51
upc_elemsizeof, 15, 18
upc_fence, 15, 30
upc_flag_t, 52
UPC_FLOAT, 51
upc_forall, 15, 32
upc_free, 40
upc_global_alloc, 38

Index 81

UPC Language Specifications Version 1.3

upc_global_exit, 13, 38
upc_global_lock_alloc, 43
UPC_IN_ALLSYNC, 52
UPC_IN_MYSYNC, 52
UPC_IN_NOSYNC, 52
UPC_INT, 51
UPC_INT16, 51
UPC_INT32, 51
UPC_INT64, 51
UPC_INT8, 51
UPC_LDOUBLE, 51
UPC_LLONG, 51
upc_localsizeof, 15, 17, 42
upc_lock, 45
upc_lock_attempt, 46
upc_lock_free, 44
upc_lock_t, 43
UPC_LOGAND, 50
UPC_LOGOR, 50
UPC_LONG, 51
UPC_MAX, 50
UPC_MAX_BLOCK_SIZE, 15, 16,

35
upc_memcpy, 47
upc_memget, 47
upc_memput, 48
upc_memset, 48
UPC_MIN, 50
UPC_MULT, 50
upc_notify, 15, 30
upc_op_t, 50
UPC_OR, 50
UPC_OUT_ALLSYNC, 52
UPC_OUT_MYSYNC, 52
UPC_OUT_NOSYNC, 52
upc_phaseof, 19, 28
UPC_PTS, 51
upc_relaxed.h, 37

upc_resetphase, 41
UPC_SHORT, 51
upc_strict.h, 37
upc_threadof, 19, 41
upc_type_t, 51
upc_types.h, 37, 50
UPC_UCHAR, 51
UPC_UINT, 51
UPC_UINT16, 51
UPC_UINT32, 51
UPC_UINT64, 51
UPC_UINT8, 51
UPC_ULLONG, 51
UPC_ULONG, 51
upc_unlock, 46
UPC_USHORT, 51
upc_wait, 15, 30
UPC_XOR, 50

work sharing, 32

82 Index

UPC Required Library Specifications
Version 1.3

A publication of the UPC Consortium

November 16, 2013

UPC Required Library Specifications Version 1.3

Contents

Contents 2

7 Library 3
7.4 UPC Collective Utilities <upc_collective.h> 3

7.4.1 Standard headers . 3
7.4.2 Relocalization Operations 4
7.4.3 Computational Operations 13

7.5 High-Performance Wall-Clock Timers <upc_tick.h> 17
7.5.1 Standard header . 17
7.5.2 upc_tick_t functions 18

Index 20

2 Contents

UPC Required Library Specifications Version 1.3

7 Library

1 This section provides UPC parallel extensions of [ISO/IEC00 Sec 7.1.2]. Also
see the UPC Optional Library Specifications.

2 The libraries specified in this document are required and shall be provided
by all conforming implementations of the UPC language.

7.4 UPC Collective Utilities <upc_collective.h>

1 Implementations that support this interface shall predefine the feature macro
__UPC_COLLECTIVE__ to the value 1.

2 The following requirements apply to all of the functions defined in Section 7.4.

3 All of the functions are collective. 1

4 All collective function arguments are single-valued.

5 Collective functions may not be called between upc_notify and the corre-
sponding upc_wait.

7.4.1 Standard headers

1 The standard header is

<upc_collective.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.4 are declared by the header <upc_collective.h>.

3 Every inclusion of <upc_collective.h> has the effect of including <upc_types.h>.

1Note that collective does not necessarily imply barrier synchronization. The synchro-
nization behavior of the library functions is explicitly controlled by using the upc_flag_t
flags argument. See UPC Language Specification, Section 7.3.3 for details.

§7 Library 3

UPC Required Library Specifications Version 1.3

7.4.2 Relocalization Operations

7.4.2.1 The upc_all_broadcast function

Synopsis

1 #include <upc_collective.h>
void upc_all_broadcast(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_broadcast function copies a block of memory with affinity to
a single thread to a block of shared memory on each thread. The number of
bytes in each block is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_broadcast function treats the src pointer as if it pointed to
a shared memory area with the type:

shared [] char[nbytes]

5 The effect is equivalent to copying the entire array pointed to by src to each
block of nbytes bytes of a shared array dst with the type:

shared [nbytes] char[nbytes * THREADS]

6 The target of the dst pointer must have affinity to thread 0.

7 The dst pointer is treated as if it has phase 0.

8 If copying takes place between objects that overlap, the behavior is unde-
fined.

9 EXAMPLE 1 shows upc_all_broadcast

#include <upc_collective.h>
shared int A[THREADS];
shared int B[THREADS];
// Initialize A.
upc_barrier;
upc_all_broadcast(B, &A[1], sizeof(int),

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);

4 Relocalization Operations §7.4.2

UPC Required Library Specifications Version 1.3

upc_barrier;

10 EXAMPLE 2:

#include <upc_collective.h>
#define NELEMS 10
shared [] int A[NELEMS];
shared [NELEMS] int B[NELEMS*THREADS];
// Initialize A.
upc_all_broadcast(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

11 EXAMPLE 3 shows (A[3],A[4]) is broadcast to (B[0],B[1]), (B[10],B[11]),
(B[20],B[21]), ..., (B[NELEMS*(THREADS-1)],B[NELEMS*(THREADS-1)+1]).

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [NELEMS] int B[NELEMS*THREADS];
// Initialize A.
upc_barrier;
upc_all_broadcast(B, &A[3], sizeof(int)*2,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

7.4.2.2 The upc_all_scatter function

Synopsis

1 #include <upc_collective.h>
void upc_all_scatter(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_scatter function copies the 𝑖th block of an area of shared
memory with affinity to a single thread to a block of shared memory with
affinity to the 𝑖th thread. The number of bytes in each block is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_scatter function treats the src pointer as if it pointed to a

§7.4.2.2 The upc_all_scatter function 5

UPC Required Library Specifications Version 1.3

shared memory area with the type:

shared [] char[nbytes * THREADS]

5 and it treats the dst pointer as if it pointed to a shared memory area with
the type:

shared [nbytes] char[nbytes * THREADS]

6 The target of the dst pointer must have affinity to thread 0.

7 The dst pointer is treated as if it has phase 0.

8 For each thread 𝑖, the effect is equivalent to copying the 𝑖th block of nbytes
bytes pointed to by src to the block of nbytes bytes pointed to by dst that
has affinity to thread 𝑖.

9 If copying takes place between objects that overlap, the behavior is unde-
fined.

10 EXAMPLE 1 upc_all_scatter for the dynamic THREADS translation en-
vironment.

#include <upc_collective.h>
#define NUMELEMS 10
#define SRC_THREAD 1
shared int *A;
shared [] int *myA, *srcA;
shared [NUMELEMS] int B[NUMELEMS*THREADS];

// allocate and initialize an array distributed across all threads
A = upc_all_alloc(THREADS, THREADS*NUMELEMS*sizeof(int));
myA = (shared [] int *) &A[MYTHREAD];
for (i=0; i<NUMELEMS*THREADS; i++)

myA[i] = i + NUMELEMS*THREADS*MYTHREAD; // (for example)
// scatter the SRC_THREAD’s row of the array
srcA = (shared [] int *) &A[SRC_THREAD];
upc_barrier;
upc_all_scatter(B, srcA, sizeof(int)*NUMELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

11 EXAMPLE 2 upc_all_scatter for the static THREADS translation envi-

6 The upc_all_scatter function §7.4.2.2

UPC Required Library Specifications Version 1.3

ronment.

#include <upc_collective.h>
#define NELEMS 10
shared [] int A[NELEMS*THREADS];
shared [NELEMS] int B[NELEMS*THREADS];
// Initialize A.
upc_all_scatter(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.4.2.3 The upc_all_gather function

Synopsis

1 #include <upc_collective.h>
void upc_all_gather(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_gather function copies a block of shared memory that has
affinity to the 𝑖th thread to the 𝑖th block of a shared memory area that has
affinity to a single thread. The number of bytes in each block is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_gather function treats the src pointer as if it pointed to a
shared memory area of nbytes bytes on each thread and therefore had type:

shared [nbytes] char[nbytes * THREADS]

5 and it treats the dst pointer as if it pointed to a shared memory area with
the type:

shared [] char[nbytes * THREADS]

6 The target of the src pointer must have affinity to thread 0.

7 The src pointer is treated as if it has phase 0.

8 For each thread 𝑖, the effect is equivalent to copying the block of nbytes bytes
pointed to by src that has affinity to thread 𝑖 to the 𝑖th block of nbytes
bytes pointed to by dst.

9 If copying takes place between objects that overlap, the behavior is unde-

§7.4.2.3 The upc_all_gather function 7

UPC Required Library Specifications Version 1.3

fined.

10 EXAMPLE 1 upc_all_gather for the static THREADS translation environ-
ment.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [] int B[NELEMS*THREADS];
// Initialize A.
upc_all_gather(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

11 EXAMPLE 2 upc_all_gather for the dynamic THREADS translation en-
vironment.

#include <upc.h>
#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [] int *B;
B = (shared [] int *) upc_all_alloc(1,NELEMS*THREADS*sizeof(int));
// Initialize A.
upc_barrier;
upc_all_gather(B, A, sizeof(int)*NELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

7.4.2.4 The upc_all_gather_all function

Synopsis

1 #include <upc_collective.h>
void upc_all_gather_all(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_gather_all function copies a block of memory from one shared
memory area with affinity to the 𝑖th thread to the 𝑖th block of a shared
memory area on each thread. The number of bytes in each block is nbytes.

8 The upc_all_gather_all function §7.4.2.4

UPC Required Library Specifications Version 1.3

3 nbytes must be strictly greater than 0.

4 The upc_all_gather_all function treats the src pointer as if it pointed
to a shared memory area of nbytes bytes on each thread and therefore had
type:

shared [nbytes] char[nbytes * THREADS]

5 and it treats the dst pointer as if it pointed to a shared memory area with
the type:

shared [nbytes * THREADS] char[nbytes * THREADS * THREADS]

6 The targets of the src and dst pointers must have affinity to thread 0.

7 The src and dst pointers are treated as if they have phase 0.

8 The effect is equivalent to copying the 𝑖th block of nbytes bytes pointed to
by src to the 𝑖th block of nbytes bytes pointed to by dst that has affinity
to each thread.

9 If copying takes place between objects that overlap, the behavior is unde-
fined.

10 EXAMPLE 1 upc_all_gather_all for the static THREADS translation en-
vironment.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [NELEMS*THREADS] int B[THREADS][NELEMS*THREADS];
// Initialize A.
upc_barrier;
upc_all_gather_all(B, A, sizeof(int)*NELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

11 EXAMPLE 2 upc_all_gather_all for the dynamic THREADS translation
environment.

#include <upc.h>
#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];

§7.4.2.4 The upc_all_gather_all function 9

UPC Required Library Specifications Version 1.3

shared int *Bdata;
shared [] int *myB;

Bdata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));
myB = (shared [] int *)&Bdata[MYTHREAD];

// Bdata contains THREADS*THREADS*NELEMS elements.
// myB is MYTHREAD’s row of Bdata.
// Initialize A.
upc_all_gather_all(Bdata, A, NELEMS*sizeof(int),

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.4.2.5 The upc_all_exchange function

Synopsis

1 #include <upc_collective.h>
void upc_all_exchange(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_exchange function copies the 𝑖th block of memory from a
shared memory area that has affinity to thread 𝑗 to the 𝑗th block of a shared
memory area that has affinity to thread 𝑖. The number of bytes in each block
is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_exchange function treats the src pointer and the dst pointer
as if each pointed to a shared memory area of nbytes*THREADS bytes on each
thread and therefore had type:

shared [nbytes * THREADS] char[nbytes * THREADS * THREADS]

5 The targets of the src and dst pointers must have affinity to thread 0.

6 The src and dst pointers are treated as if they have phase 0.

7 For each pair of threads 𝑖 and 𝑗, the effect is equivalent to copying the 𝑖th
block of nbytes bytes that has affinity to thread 𝑗 pointed to by src to the
𝑗th block of nbytes bytes that has affinity to thread 𝑖 pointed to by dst.

10 The upc_all_exchange function §7.4.2.5

UPC Required Library Specifications Version 1.3

8 If copying takes place between objects that overlap, the behavior is unde-
fined.

9 EXAMPLE 1 upc_all_exchange for the static THREADS translation envi-
ronment.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS*THREADS] int A[THREADS][NELEMS*THREADS];
shared [NELEMS*THREADS] int B[THREADS][NELEMS*THREADS];
// Initialize A.
upc_barrier;
upc_all_exchange(B, A, NELEMS*sizeof(int),

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

10 EXAMPLE 2 upc_all_exchange for the dynamic THREADS translation
environment.

#include <upc.h>
#include <upc_collective.h>
#define NELEMS 10
shared int *Adata, *Bdata;
shared [] int *myA, *myB;
int i;

Adata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));
myA = (shared [] int *)&Adata[MYTHREAD];
Bdata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));
myB = (shared [] int *)&Bdata[MYTHREAD];

// Adata and Bdata contain THREADS*THREADS*NELEMS elements.
// myA and myB are MYTHREAD’s rows of Adata and Bdata, resp.

// Initialize MYTHREAD’s row of A. For example,
for (i=0; i<NELEMS*THREADS; i++)

myA[i] = MYTHREAD*10 + i;

upc_all_exchange(Bdata, Adata, NELEMS*sizeof(int),
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

§7.4.2.5 The upc_all_exchange function 11

UPC Required Library Specifications Version 1.3

7.4.2.6 The upc_all_permute function

Synopsis

1 #include <upc_collective.h>
void upc_all_permute(shared void * restrict dst,

shared const void * restrict src,
shared const int * restrict perm,
size_t nbytes, upc_flag_t flags);

Description

2 The upc_all_permute function copies a block of memory from a shared
memory area that has affinity to the 𝑖th thread to a block of a shared memory
that has affinity to thread perm[i]. The number of bytes in each block is
nbytes.

3 nbytes must be strictly greater than 0.

4 perm[0..THREADS-1] must contain THREADS distinct values: 0, 1, ...,
THREADS-1.

5 The upc_all_permute function treats the src pointer and the dst pointer
as if each pointed to a shared memory area of nbytes bytes on each thread
and therefore had type:

shared [nbytes] char[nbytes * THREADS]

6 The targets of the src, perm, and dst pointers must have affinity to thread
0.

7 The src and dst pointers are treated as if they have phase 0.

8 The effect is equivalent to copying the block of nbytes bytes that has affinity
to thread i pointed to by src to the block of nbytes bytes that has affinity
to thread perm[𝑖] pointed to by dst.

9 If any of the elements referenced by dst overlap any of the elements referenced
by src or perm, the behavior is undefined.

10 EXAMPLE 1 upc_all_permute.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS], B[NELEMS*THREADS];

12 The upc_all_permute function §7.4.2.6

UPC Required Library Specifications Version 1.3

shared int P[THREADS];
// Initialize A and P.
upc_barrier;
upc_all_permute(B, A, P, sizeof(int)*NELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

7.4.3 Computational Operations

1 Computational operations are specified using a value of type upc_op_t, which
is specified in UPC Language Specification, Section 7.3.1. All of the opera-
tions defined in that section are supported for computational collectives.

In addition, the following upc_op_t value macros are defined in <upc_collective.h>:

UPC_FUNC Use the specified commutative function func to operate on the
data in the src array at each step.

UPC_NONCOMM_FUNC Use the specified non-commutative function func to op-
erate on the data in the src array at each step.

2 Bitwise operations shall not be specified for collective operations on floating-
point types.

3 The operations represented by a variable of type upc_op_t (including user-
provided operators) are assumed to be associative. A reduction or a prefix
reduction whose result is dependent on the order of operator evaluation will
have undefined results.2

4 The operations represented by a variable of type upc_op_t (except those
provided using UPC_NONCOMM_FUNC) are assumed to be commutative. A re-
duction or a prefix reduction (using operators other than UPC_NONCOMM_FUNC)
whose result is dependent on the order of the operands will have undefined
results.

Forward references: reduction, prefix reduction (7.4.3.1).

2 Implementations are not obligated to prevent failures that might arise because of a
lack of associativity of built-in functions due to floating-point roundoff or overflow.

§7.4.3 Computational Operations 13

UPC Required Library Specifications Version 1.3

7.4.3.1 The upc_all_reduce and upc_all_prefix_reduce functions

Synopsis

1

#include <upc_collective.h>
void upc_all_reduce<<T>>(

shared void * restrict dst,
shared const void * restrict src,
upc_op_t op,
size_t nelems,
size_t blk_size,
<<TYPE>>(*func)(<<TYPE>>, <<TYPE>>),
upc_flag_t flags);

void upc_all_prefix_reduce<<T>>(
shared void * restrict dst,
shared const void * restrict src,
upc_op_t op,
size_t nelems,
size_t blk_size,
<<TYPE>>(*func)(<<TYPE>>, <<TYPE>>),
upc_flag_t flags);

Description

2 The function prototypes above represents the 22 variations of the upc_all_reduceT
and upc_all_prefix_reduceT functions where T and TYPE have the follow-
ing correspondences: 3

T TYPE T TYPE
C signed char L signed long
UC unsigned char UL unsigned long
S signed short F float
US unsigned short D double
I signed int LD long double
UI unsigned int

3 On completion of the upc_all_reduce variants, the value of the TYPE shared
object referenced by dst is src[0] ⊕ src[1] ⊕ · · · ⊕ src[nelems-1] where

3For example, if T is C, then TYPE must be signed char.

14 The upc_all_reduce and upc_all_prefix_reduce
functions §7.4.3.1

UPC Required Library Specifications Version 1.3

“⊕” is the operator specified by the variable op.

4 On completion of the upc_all_prefix_reduce variants, the value of the
TYPE shared object referenced by dst[i] is src[0] ⊕ src[1] ⊕ · · · ⊕ src[i]
for 0 ≤ i ≤ nelems-1 and where “⊕” is the operator specified by the variable
op.

5 If a floating-point variant of either function encounters an operand with a
NaN value (as defined in [ISO/IEC00 Sec 5.2.4.2.2]), behavior is implementation-
defined.

6 If the value of blk_size passed to these functions is greater than 0 then
they treat the src pointer as if it pointed to a shared memory area of nelems
elements of type TYPE and blocking factor blk_size, and therefore had type:

shared [blk_size] TYPE [nelems]

7 If the value of blk_size passed to these functions is 0 then they treat the
src pointer as if it pointed to a shared memory area of nelems elements of
type TYPE with an indefinite layout qualifier, and therefore had type4:

shared [] TYPE[nelems]

8 The phase of the src pointer is respected when referencing array elements,
as specified above.

9 upc_all_prefix_reduceT treats the dst pointer equivalently to the src
pointer as described in the past 3 paragraphs.

10 upc_all_prefix_reduceT requires the affinity and phase of the src and
dst pointers to match – ie. upc_threadof(src) == upc_threadof(dst)
&& upc_phaseof(src) == upc_phaseof(dst).

11 upc_all_reduceT treats the dst pointer as having type:

shared TYPE *

12 If any of the elements referenced by src and dst overlap, the behavior is
undefined.

13 EXAMPLE 1 upc_all_reduce of type long UPC_ADD.

#include <upc_collective.h>

4Note that upc_blocksize(src) == 0 if src has this type, so the argument value 0
has a natural connection to the block size of src.

§7.4.3.1 The upc_all_reduce and upc_all_prefix_reduce
functions 15

UPC Required Library Specifications Version 1.3

#define BLK_SIZE 3
#define NELEMS 10
shared [BLK_SIZE] long A[NELEMS*THREADS];
shared long *B;
long result;
// Initialize A. The result below is defined only on thread 0.
upc_barrier;
upc_all_reduceL(B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE,

NULL, UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

14 EXAMPLE 2 upc_all_prefix_reduce of type long UPC_ADD.

#include <upc_collective.h>
#define BLK_SIZE 3
#define NELEMS 10
shared [BLK_SIZE] long A[NELEMS*THREADS];
shared [BLK_SIZE] long B[NELEMS*THREADS];
// Initialize A.
upc_all_prefix_reduceL(B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE,

NULL, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

16 The upc_all_reduce and upc_all_prefix_reduce
functions §7.4.3.1

UPC Required Library Specifications Version 1.3

7.5 High-Performance Wall-Clock Timers <upc_tick.h>

1 This subsection provides extensions of [ISO/IEC00 Sec 7.23]. All the char-
acteristics of library functions described in [ISO/IEC00 Sec 7.1.4] apply to
these as well. Implementations that support this interface shall predefine the
feature macro __UPC_TICK__ to the value 1.

Rationale

2 The upc_tick_t type and associated functions provide convenient and portable
support for querying high-precision system timers for obtaining high-precision
wall-clock timings of sections of code. Many hardware implementations offer
access to high-performance timers with a handful of instructions, providing
timer precision and overhead that can be several orders of magnitude better
than can be obtained through the use of existing interfaces in [ISO/IEC00]
or POSIX (e.g. the gettimeofday() system call).

7.5.1 Standard header

1 The standard header is

<upc_tick.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.5 are declared by the header <upc_tick.h>.

7.5.1.1 upc_tick_t Type

1 The following type is defined in upc_tick.h:

upc_tick_t

2 upc_tick_t is an unsigned integral type representing a quantity of abstract
timer ticks, whose ratio to wall-clock time is implementation-dependent and
thread-dependent.

3 upc_tick_t values are thread-specific quantities with a thread-specific inter-
pretation (e.g. they might represent a hardware cycle count on a particular
processor, starting at some arbitrary time in the past). More specifically,
upc_tick_t values do not provide a globally-synchronized timer (i.e. the si-
multaneous absolute tick values may differ across threads), and furthermore

§7.5 High-Performance Wall-Clock Timers <upc_tick.h> 17

UPC Required Library Specifications Version 1.3

the tick-to-wall-clock conversion ratio might also differ across UPC threads
(e.g. on a system with heterogenerous processor clock rates, the tick values
may advance at different rates for different UPC threads).

4 As a rule of thumb, upc_tick_t values and intervals obtained by different
threads should never be directly compared or arithmetically combined, with-
out first converting the relevant tick intervals to wall time intervals (using
upc_ticks_to_ns).

7.5.1.2 UPC_TICK_MAX and UPC_TICK_MIN

1 The following macro values are defined in upc_tick.h:

UPC_TICK_MAX
UPC_TICK_MIN

2 UPC_TICK_MAX and UPC_TICK_MIN are constants of type upc_tick_t. They
respectively provide the minimal and maximal values representable in a vari-
able of type upc_tick_t.

7.5.2 upc_tick_t functions

7.5.2.1 The upc_ticks_now function

Synopsis

1 #include <upc_tick.h>

upc_tick_t upc_ticks_now(void);

Description

2 upc_ticks_now returns the current value of the tick timer for the calling
thread, as measured from an arbitrary, thread-specific point of time in the
past (which is fixed during any given program execution).

3 The function always succeeds.

18 UPC_TICK_MAX and UPC_TICK_MIN §7.5.1.2

UPC Required Library Specifications Version 1.3

7.5.2.2 The upc_ticks_to_ns function

Synopsis

1 #include <upc_tick.h>

uint64_t upc_ticks_to_ns(upc_tick_t ticks);

Description

2 upc_ticks_to_ns converts a quantity of ticks obtained by the calling thread
into wall-clock nanoseconds.

3 The function always succeeds.

4 EXAMPLE 1: an example of the upc_tick interface in use:

#include <upc_tick.h>
#include <stdio.h>

upc_tick_t start = upc_ticks_now();
compute_foo(); /* do something that needs to be timed */

upc_tick_t end = upc_ticks_now();

printf("Time was: %f seconds\n", upc_ticks_to_ns(end-start)/1.0E-9);

§7.5.2.2 The upc_ticks_to_ns function 19

UPC Required Library Specifications Version 1.3

Index

__UPC_COLLECTIVE__, 3
__UPC_TICK__, 17

broadcast, 4

collective libarary, 3
cycle counter, 17

exchange, 10

gather, 7
gather, to all, 8

permute, 12
prefix reduction, 14

reduction, 14

scatter, 5

tick counter, 17
timer, 17

upc_all_broadcast, 4
upc_all_exchange, 10
upc_all_gather, 7
upc_all_gather_all, 8
upc_all_permute, 12
upc_all_reduce, 14
upc_all_reduce_prefix, 14
upc_all_scatter, 5
upc_collective.h, 3
UPC_FUNC, 13
UPC_NONCOMM_FUNC, 13
upc_tick.h, 17
UPC_TICK_MAX, 18
UPC_TICK_MIN, 18

upc_tick_t, 17
upc_ticks_now, 18
upc_ticks_to_ns, 19

wall-clock, 17

20 Index

UPC Optional Library Specifications
Version 1.3

A publication of the UPC Consortium

November 16, 2013

UPC Optional Library Specifications Version 1.3

Contents

Contents 2

7 Library 3
7.6 UPC Atomic Memory Operations <upc_atomic.h> 4

7.6.1 Standard headers . 4
7.6.2 Common Requirements 4
7.6.3 Atomic Library Types 5
7.6.4 Atomic Library Functions 7

7.7 Castability Functions <upc_castable.h> 12
7.7.1 Standard headers . 12
7.7.2 Castability Functions 12

7.8 UPC Parallel I/O <upc_io.h> 15
7.8.1 Background . 17
7.8.2 Predefined Types . 22
7.8.3 UPC File Operations 23
7.8.4 Reading Data . 33
7.8.5 Writing Data . 35
7.8.6 List I/O . 37
7.8.7 Asynchronous I/O . 42

7.9 UPC Non-Blocking Transfer Operations <upc_nb.h> 49
7.9.1 Standard header . 49
7.9.2 Common Requirements 49
7.9.3 Explicit Handle Type 52
7.9.4 Explicit-handle transfer initiation functions 53
7.9.5 Implicit-handle transfer initiation functions 56
7.9.6 Explicit-handle synchronization functions 59
7.9.7 Implicit-handle synchronization functions 60

Index 61

2 Contents

UPC Optional Library Specifications Version 1.3

7 Library

1 This section provides UPC parallel extensions of [ISO/IEC00 Sec 7.1.2]. Also
see the UPC Required Library Specifications.

2 The libraries specified in this document are optional – conforming imple-
mentations of the UPC language may provide or omit each library at the
subsection level (e.g. Sec 7.4). Any subsection which is provided must be
implemented in its entirety and predefine the specified feature macro.

§7 Library 3

UPC Optional Library Specifications Version 1.3

7.6 UPC Atomic Memory Operations <upc_atomic.h>

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.19]. All the characteristics of library functions described in [ISO/IEC00
Sec 7.1.4] apply to these as well. Implementations that support this interface
shall predefine the feature macro __UPC_ATOMIC__ to the value 1.

7.6.1 Standard headers

1 The standard header is

<upc_atomic.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.6 are declared by the header <upc_atomic.h>.

3 Every inclusion of <upc_atomic.h> has the effect of including <upc_types.h>.

7.6.2 Common Requirements

1 The following requirements apply to all of the functions defined in Section 7.6.

2 The UPC Atomic Memory Operations library introduces an atomicity do-
main, an object that specifies a single operand type and a set of operations
over which access to a memory location in a given synchronization phase is
guaranteed to be atomic if and only if no other mechanisms or atomicity
domains are used to access the same memory location in the same synchro-
nization phase. 1

3 The following table presents the required support for operations and operand
types

Operand Type Accessors Bit-wise Ops Numeric Ops
Integer X X X
Floating Point X X
UPC_PTS X

1In particular, this implies that atomicity is only guaranteed if atomic operations ac-
cessing a given memory location are separated from any other accesses to that location (via
direct read/writes or a different domain) by a upc_barrier or upc_notify/upc_wait.

4 UPC Atomic Memory Operations <upc_atomic.h> §7.6

UPC Optional Library Specifications Version 1.3

where

- Supported integer types are UPC_INT, UPC_UINT, UPC_LONG, UPC_ULONG,
UPC_INT32, UPC_UINT32, UPC_INT64, and UPC_UINT64.

- Supported floating-point types are UPC_FLOAT and UPC_DOUBLE.

- Supported accessors are UPC_GET, UPC_SET, and UPC_CSWAP.

- Supported bit-wise operations are UPC_AND, UPC_OR, and UPC_XOR.

- Supported numeric operations are UPC_ADD, UPC_SUB, UPC_MULT, UPC_INC,
UPC_DEC, UPC_MAX, and UPC_MIN.

4 The value macros listed below are defined in <upc_atomic.h>. All other
UPC_* value macros used in this subsection are defined by <upc_types.h>
(see UPC Language Specification, Section 7.3.1 and UPC Language Specifi-
cation, Section 7.3.2).

Macro name Specified operation
UPC_GET Read
UPC_SET Write or swap
UPC_CSWAP Conditional swap
UPC_SUB Subtraction
UPC_INC Increment by 1
UPC_DEC Decrement by 1

7.6.3 Atomic Library Types

7.6.3.1 The upc_atomicdomain_t type

1 The header <upc_atomic.h> declares the type

upc_atomicdomain_t

2 The type upc_atomicdomain_t is an opaque UPC type. upc_atomicdomain_t
is a shared datatype with incomplete type (as defined in [ISO/IEC00 Sec
6.2.5]). Objects of type upc_atomicdomain_t may therefore only be manip-
ulated through pointers.

3 Two pointers that reference the same atomicity domain object will compare
as equal. The results of applying upc_phaseof(), upc_threadof(), and
upc_addrfield() to such pointers are undefined.

§7.6.3 Atomic Library Types 5

UPC Optional Library Specifications Version 1.3

7.6.3.2 The upc_atomichint_t type

1 The header <upc_atomic.h> declares the integral type

upc_atomichint_t

2 The following macros expand to positive integer constant expressions with
type upc_atomichint_t and distinct values. They allow the specification
of a “hint” to the library implementation to indicate a preferred mode of
optimization for atomic operations performed on a domain.

UPC_ATOMIC_HINT_DEFAULT == 0 An implementation-defined default mode

UPC_ATOMIC_HINT_LATENCY Favor low-latency atomic memory operations

UPC_ATMOIC_HINT_THROUGHPUT Favor high-throughput atomic memory op-
erations

UPC_ATOMIC_HINT_* Implementation-defined additional hint values

6 The upc_atomichint_t type §7.6.3.2

UPC Optional Library Specifications Version 1.3

7.6.4 Atomic Library Functions

7.6.4.1 The upc_all_atomicdomain_alloc function

Synopsis

1 #include <upc_atomic.h>
upc_atomicdomain_t *upc_all_atomicdomain_alloc(upc_type_t type,

upc_op_t ops, upc_atomichint_t hints);

Description

2 The upc_all_atomicdomain_alloc function dynamically allocates an atom-
icity domain and returns a pointer to it.

3 The upc_all_atomicdomain_alloc function is a collective function, with
single-valued arguments. The return value on every thread points to the
same atomicity domain object.

4 The atomicity domain created supports atomic library calls to operate on
objects of a unique type, specified by the type parameter. The upc_type_t
values and the corresponding type they specify are listed in UPC Language
Specification, Section 7.3.2. The type parameter shall specify a type permit-
ted by Section 7.6.2, otherwise behavior is undefined.

5 The ops parameter specifies the atomic operations to be supported by the
atomicity domain. The ops parameter shall only specify operations within
the set permitted for type (as defined in 7.6.2), otherwise behavior is unde-
fined. Multiple atomic operation value macros from 7.6.2 can be combined by
using the bitwise OR operator (|), and each value has a unique bitwise repre-
sentation that can be unambiguously tested using the bitwise AND operator
(&).

6 The implementation is free to ignore the hints parameter.

7 EXAMPLE: Collectively allocate an atomicity domain that supports the ad-
dition, maximum, and minimum operations (i.e., UPC_ADD, UPC_MAX, UPC_MIN)
on signed 64-bit integers (i.e., int64_t).

#include <upc_atomic.h>
upc_atomicdomain_t* domain = upc_all_atomicdomain_alloc(

UPC_INT64, UPC_ADD | UPC_MAX | UPC_MIN, 0);

§7.6.4 Atomic Library Functions 7

UPC Optional Library Specifications Version 1.3

7.6.4.2 The upc_all_atomicdomain_free function

Synopsis

1 #include <upc_atomic.h>
void upc_all_atomicdomain_free(upc_atomicdomain_t *ptr);

Description

2 The upc_all_atomicdomain_free function is a collective function, with the
single-valued argument ptr.

3 The upc_all_atomicdomain_free function frees the resources associated
with the atomicity domain pointed to by ptr. If ptr is a null pointer, no
action occurs. Otherwise, if the argument does not match a pointer earlier
returned by the upc_all_atomicdomain_alloc function, or if the atomicity
domain has been deallocated by a previous call to upc_all_atomicdomain_free
the behavior is undefined.

4 The atomicity domain referenced by ptr is guaranteed to remain valid until
all threads have entered the call to upc_all_atomicdomain_free, but the
function does not otherwise guarantee any synchronization or strict reference.

5 Any subsequent calls to atomic library functions from any thread using ptr
have undefined behavior.

7.6.4.3 The upc_atomic_strict and upc_atomic_relaxed functions

Synopsis

1 #include <upc_atomic.h>
void upc_atomic_strict(upc_atomicdomain_t *domain,

void * restrict fetch_ptr, upc_op_t op,
shared void * restrict target,
const void * restrict operand1,
const void * restrict operand2);

void upc_atomic_relaxed(upc_atomicdomain_t *domain,
void * restrict fetch_ptr, upc_op_t op,
shared void * restrict target,
const void * restrict operand1,
const void * restrict operand2);

Description

8 The upc_all_atomicdomain_free function §7.6.4.2

UPC Optional Library Specifications Version 1.3

2 The op argument shall specify an operation included in the ops argument to
the upc_all_atomicdomain_alloc call used to construct domain, otherwise
behavior is undefined.

3 The target argument shall point to an object having the type specified in the
type argument to the upc_all_atomicdomain_alloc call used to construct
domain, otherwise behavior is undefined. The function treats the arguments
fetch_ptr, target, operand1 and operand2 as pointers to this type.

4 The upc_atomic_strict and upc_atomic_relaxed functions perform an
atomic update of the object pointed to by target such that:

*target = *target ⊕ *operand1, where “⊕” is the operator
specified by the variable op and op ∈ {UPC_AND, UPC_OR,
UPC_XOR, UPC_ADD, UPC_SUB, UPC_MULT, UPC_MIN, UPC_MAX}

*target = *target + 1, where op is UPC_INC
*target = *target - 1, where op is UPC_DEC
*target = (*target == *operand1) ? *operand2 : *target,

where op is UPC_CSWAP2

*target = *operand1, where op is UPC_SET
*target is unchanged, where op is UPC_GET

5 The arguments operand1 and operand2 shall each be a null pointer for those
operations that do not require them.3

6 The value of *target prior to performing the specified update is stored in
*fetch_ptr if and only if fetch_ptr is not a null pointer.4 If op is UPC_GET,
fetch_ptr shall not be a null pointer.

7 The following requirements apply when domain was allocated with type ∈
{UPC_FLOAT, UPC_DOUBLE}: If *target, *operand1 or *operand2 is a sig-
nalling NaN value (as defined in [ISO/IEC00 Sec 5.2.4.2.2]), behavior is un-
defined. If op is UPC_CSWAP and *target or *operand1 is a quiet NaN value
(as defined in [ISO/IEC00 Sec 5.2.4.2.2]), behavior is undefined.

8 If domain was allocated with type == UPC_PTS and op is UPC_CSWAP, the
2UPC_CSWAP does not fail spuriously, for example due to cache events.
3That is, for all permitted operations other than UPC_CSWAP, operand2 shall be a null

pointer, and for UPC_GET, UPC_INC and UPC_DEC both operand1 and operand2 shall be a
null pointer.

4If op is UPC_SET and fetch_ptr is not a null pointer, the effect is an unconditional
atomic swap.

§7.6.4.3 The upc_atomic_strict and upc_atomic_relaxed
functions

9

UPC Optional Library Specifications Version 1.3

comparison shall be performed as specified in [UPC Language Specification
Sec. 6.4.2]; specifically, it ignores the phase component of the pointers-to-
shared.

9 In all other cases, the value computed by op and stored in *target shall be
equal to the value that would have been computed by passing the operands
to the corresponding built-in language operator. In particular, this requires
that overflows, underflows and quiet NaN values are handled as specified in
[ISO/IEC00].

10 The upc_atomic_relaxed function atomically performs a relaxed shared
read of *target followed by a relaxed shared write of *target. The upc_atomic_strict
function atomically performs a strict shared read of *target followed by
a strict shared write of *target. The write is omitted for UPC_GET or a
UPC_CSWAP that fails, and the read is omitted for UPC_SET when fetch_ptr
is a null pointer. Atomically requires the read and write accesses compris-
ing one atomic operation shall not appear (to any thread) to have been
interleaved (or word-torn) with the read/write pair of a conflicting atomic
operation to the same location using the same atomicity domain.

11 EXAMPLE: Perform a relaxed atomic fetch-and-increment of a value of type
uint64_t after allocating an atomicity domain domain to support UPC_INC
for UPC_UINT64.

#include <upc_atomic.h>
shared uint64_t val = 42;
uint64_t oldval;
upc_atomicdomain_t* domain = upc_all_atomicdomain_alloc(

UPC_UINT64, UPC_INC, 0);
upc_atomic_relaxed(domain, &oldval, UPC_INC, &val, 0, 0);

10 The upc_atomic_strict and upc_atomic_relaxed
functions

§7.6.4.3

UPC Optional Library Specifications Version 1.3

7.6.4.4 The upc_atomic_isfast function

Synopsis

1 #include <upc_atomic.h>
int upc_atomic_isfast(upc_type_t type, upc_op_t ops,

shared void *addr);

Description

2 The upc_atomic_isfast function queries the implementation to determine
the expected performance of a upc_atomic_relaxed call on addr, using a
domain allocated with the arguments type and ops. The call returns non-
zero if the performance is expected to be comparable to the fastest expected
performance of upc_atomic_relaxed for any combination of addr, type, and
ops. Otherwise the function returns zero.5

5This function allows the implementation to report which combinations of type, ops,
and alignment are best supported; e.g., using hardware atomic instructions. Some imple-
mentations may also return zero when upc_threadof(addr) is not equal to the calling
thread, to indicate the additional cost of remote access.

§7.6.4.4 The upc_atomic_isfast function 11

UPC Optional Library Specifications Version 1.3

7.7 Castability Functions <upc_castable.h>

1 A UPC implementation may map some or all of the shared address space of
another thread into the local address space of the current thread. The func-
tions described in this section allow the programmer to determine whether
this is the case, and to make use of this information by providing the ability
to obtain valid local addresses for shared cells with affinity to other threads.
This capability, sometimes called "privatizability", is referred to as "castabil-
ity" in this section.

2 Implementations that support this interface shall predefine the feature macro
__UPC_CASTABLE__ to the value 1.

7.7.1 Standard headers

1 The standard header is

<upc_castable.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.7 are declared by the header <upc_castable.h>.

7.7.2 Castability Functions

7.7.2.1 The upc_cast function

Synopsis

1 #include <upc_castable.h>
void *upc_cast(const shared void *ptr);

Description

2 The upc_cast function converts the specified pointer-to-shared to a valid
pointer-to-local. If such a conversion is not possible, a null pointer is re-
turned.

3 The pointer ptr points into one or more shared objects. Consider the portions
of all of these shared objects with affinity to upc_threadof(ptr). Choose the
shared object containing ptr where the portion with this affinity is largest.
The conversion performed by the upc_cast function will be considered possi-

12 Castability Functions <upc_castable.h> §7.7

UPC Optional Library Specifications Version 1.3

ble only if this entire portion may be read and written by the current thread
based on the returned pointer-to-local value.

4 If the conversion is possible, the pointer-to-shared value is referred to as
castable.

5 If upc_threadof(ptr) is equal to MYTHREAD, upc_cast(ptr) is equivalent
to (void *)ptr.

6 If the ptr pointer is null, upc_cast returns a null pointer.

7 The pointer returned by upc_cast is valid only in the calling thread. It
cannot be assumed that the return value may be passed to a different thread
and used by that thread. It also cannot be assumed that two threads calling
upc_cast with the same argument will get the same return value.

8 The pointer returned by upc_cast remains valid for the lifetime of the ref-
erenced shared object. In particular, if the referenced shared object was
dynamically allocated, the pointer is no longer valid after the associated
shared memory has been freed.

9 If a call to upc_cast succeeds, subsequent calls by the same thread with
the same pointer, or with a pointer into the same object and with the same
affinity, are also guaranteed to succeed for the lifetime of the object.

7.7.2.2 The upc_thread_info function

Synopsis

1 #include <upc_castable.h>
upc_thread_info_t upc_thread_info(size_t threadId);

Description

2 The upc_thread_info function returns information about potential uses of
the upc_cast function in the calling thread in reference to objects with affin-
ity to thread threadId. The information is returned in a upc_thread_info_t
structure, with the following fields:

int guaranteedCastable
Indicates which memory regions are guaranteed to be castable.

int probablyCastable
Indicates which memory regions are likely (but not guaranteed) to be
castable.

§7.7.2.2 The upc_thread_info function 13

UPC Optional Library Specifications Version 1.3

3 An implementation may provide additional fields in this structure, allowing
upc_thread_info to return other information about thread threadId with
respect to the calling thread.

4 The guaranteedCastable and probablyCastable fields contain coded inte-
ger values indicating memory regions. If the flag for a particular region is
set in the guaranteedCastable field, it indicates that any pointer into that
region with affinity to threadId is castable. If the flag is set for a particular
region is set in the probablyCastable field, it indicates that it is likely, but
not guaranteed, that a pointer into that region with affinity to threadId is
castable.

5 The <upc_castable.h> header defines the following macros, which expand
to integer constant expressions with type int, which are suitable for use
in #if preprocessing directives. Each macro value designates the specified
memory region. The expressions are defined such that each value can be
unambiguously tested using the bitwise AND operator (&).

UPC_CASTABLE_ALL_ALLOC
Refers to memory allocated via upc_all_alloc.

UPC_CASTABLE_GLOBAL_ALLOC
Refers to memory allocated via upc_global_alloc.

UPC_CASTABLE_ALLOC
Refers to memory allocated via upc_alloc.

UPC_CASTABLE_STATIC
Refers to shared variables defined via static and file scope declarations.

6 Implementations may define additional memory region flags.

7 The macro UPC_CASTABLE_ALL shall be defined to be all the region-specific
values (including any implementation-specific values) combined via bitwise
OR (|) operations. It is defined for convenient testing of whether all shared
memory regions are covered in the returned flag.

8 If no memory regions are indicated by the returned flag, the flag value shall
be zero.

14 The upc_thread_info function §7.7.2.2

UPC Optional Library Specifications Version 1.3

7.8 UPC Parallel I/O <upc_io.h>

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.19]. All the characteristics of library functions described in [ISO/IEC00
Sec 7.1.4] apply to these as well. Implementations that support this interface
shall predefine the feature macro __UPC_IO__ to the value 1.

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.8 are declared by the header <upc_io.h>.

3 Every inclusion of <upc_io.h> has the effect of including <upc_types.h>.

Common Constraints

4 All UPC-IO functions are collective and must be called by all threads collec-
tively.6

5 If a program calls exit, upc_global_exit, or returns from main with a UPC
file still open, the file will automatically be closed at program termination,
and the effect will be equivalent to upc_all_fclose being implicitly called
on the file.

6 If a program attempts to read past the end of a file, the read function will
read data up to the end of file and return the number of bytes actually read,
which may be less than the amount requested.

7 Writing past the end of a file increases the file size.

8 If a program seeks to a location past the end of a file and writes starting from
that location, the data in the intermediate (unwritten) portion of the file is
undefined. For example, if a program opens a new file (of size 0 bytes), seeks
to offset 1024 and writes some data beginning from that offset, the data at
offsets 0–1023 is undefined. Seeking past the end of file and performing a
write causes the current file size to immediately be extended up to the end
of the write. However, just seeking past the end of file or attempting to read
past the end of file, without a write, does not extend the file size.

9 All generic pointers-to-shared passed to the I/O functions (as function ar-

6Note that collective does not necessarily imply barrier synchronization. The synchro-
nization behavior of the UPC-IO data movement library functions is explicitly controlled
by using the upc_flag_t flags argument. See UPC Language Specification, Section 7.3.3
for details.

§7.8 UPC Parallel I/O <upc_io.h> 15

UPC Optional Library Specifications Version 1.3

guments or indirectly through the list I/O arguments) are treated as if they
had a phase field of zero (that is, the input phase is ignored).

10 All UPC-IO read/write functions take an argument flags of type upc_flag_t.
The semantics of this argument is defined in UPC Language Specification,
Section 7.3.3. These semantics apply only to memory locations in user-
provided buffers, not to the read/write operations on the storage medium or
any buffer memory internal to the library implementation.

11 The flags flag is included even on the fread/fwrite_local functions (which
take a pointer-to-local as the buffer argument) in order to provide well-defined
semantics for the case where one or more of the pointer-to-local arguments
references a shared object (with local affinity). In the case where all of the
pointer-to-local arguments in a given call reference only private objects, the
flags flag provides no useful additional guarantees and is recommended to
be passed as UPC_IN_NOSYNC|UPC_OUT_NOSYNC to maximize performance.

12 The arguments to all UPC-IO functions are single-valued except where ex-
plicitly noted in the function description.

13 UPC-IO, by default, supports weak consistency and atomicity semantics.
The default (weak) semantics are as follows. The data written to a file by
a thread is only guaranteed to be visible to another thread after all threads
have collectively closed or synchronized the file.

14 Writes to a file from a given thread are always guaranteed to be visible to
subsequent file reads by the same thread, even without an intervening call
to collectively close or synchronize the file.

15 Byte-level data consistency is supported.

16 If concurrent writes from multiple threads overlap in the file, the resulting
data in the overlapping region is undefined with the weak consistency and
atomicity semantics

17 When reading data being concurrently written by another thread, the data
that gets read is undefined with the weak consistency and atomicity seman-
tics.

18 File reads into overlapping locations in a shared buffer in memory using
individual file pointers or list I/O functions leads to undefined data in the
target buffer under the weak consistency and atomicity semantics.

16 UPC Parallel I/O <upc_io.h> §7.8

UPC Optional Library Specifications Version 1.3

19 A given file must not be opened at same time by the POSIX I/O and UPC-IO
libraries.

20 Except where otherwise noted, all UPC-IO functions return NON-single-
valued errors; that is, the occurrence of an error need only be reported to
at least one thread, and the errno value reported to each such thread may
differ. When an error is reported to ANY thread, the position of ALL file
pointers for the relevant file handle becomes undefined.

21 The error values that UPC-IO functions may set in errno are implementation-
defined, however the perror() and strerror() functions are still guaranteed
to work properly with errno values generated by UPC-IO.

22 UPC-IO functions can not be called between upc_notify and corresponding
upc_wait statements.

7.8.1 Background

7.8.1.1 File Accessing and File Pointers

1 Collective UPC-IO accesses can be done in and out of shared and private
buffers, thus local and shared reads and writes are generally supported.
In each of these cases, file pointers could be either common or individual.
Note that in UPC-IO, common file pointers cannot be used in conjunction
with pointer-to-local buffers. File pointer modes are specified by passing
a flag to the collective upc_all_fopen function and can be changed using
upc_all_fcntl. When a file is opened with the common file pointer flag,
all threads share a common file pointer. When a file is opened with the
individual file pointer flag, each thread gets its own file pointer.

2 UPC-IO also provides file-pointer-independent list file accesses by specifying
explicit offsets and sizes of data that is to be accessed. List IO can also be
used with either pointer-to-local buffers or pointer-to-shared buffers.

3 Examples 1-3 and their associated figures, Figures 2-4, give typical instances
of UPC-IO usage. Error checking is omitted for brevity.

4 EXAMPLE 1: collective read operation using individual file pointers

#include <upc.h>
#include <upc_io.h>

§7.8.1 Background 17

UPC Optional Library Specifications Version 1.3

double buffer[10]; // and assuming a total of 4 THREADS
upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL);
upc_all_fseek(fd, 5*MYTHREAD*sizeof(double), UPC_SEEK_SET);
upc_all_fread_local(fd, buffer, sizeof(double), 10,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
upc_all_fclose(fd);

Each thread reads a block of data into a private buffer from a particular
thread-specific offset.

5 EXAMPLE 2: a collective read operation using a common file pointer. The
data read is stored into a shared buffer, having a block size of 5 elements.
The user selects the type of file pointer at file-open time. The user can
select either individual file pointers by passing the flag UPC_INDIVIDUAL_FP
to the function upc_all_fopen, or the common file pointer by passing the
flag UPC_COMMON_FP to upc_all_fopen.

#include <upc.h>
#include <upc_io.h>
shared [5] float buffer[20]; // and assuming a total of 4 static THREADS
upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_COMMON_FP, 0, NULL);
upc_all_fread_shared(fd, buffer, upc_blocksizeof(buffer),

upc_elemsizeof(buffer), 20, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
/* or equivalently:
* upc_all_fread_shared(fd, buffer, 5, sizeof(float), 20,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
*/

7.8.1.2 Synchronous and Asynchronous I/O

1 I/O operations can be synchronous (blocking) or asynchronous (non-blocking).
While synchronous calls are quite simple and easy to use from a programming
point of view, asynchronous operations allow the overlapping of computation
and I/O to achieve improved performance. Synchronous calls block and wait
until the corresponding I/O operation is completed. On the other hand, an
asynchronous call starts an I/O operation and returns immediately. Thus,

18 Synchronous and Asynchronous I/O §7.8.1.2

UPC Optional Library Specifications Version 1.3

the executing process can turn its attention to other processing needs while
the I/O is progressing.

2 UPC-IO supports both synchronous and asynchronous I/O functionality.
The asynchronous I/O functions have the same syntax and basic seman-
tics as their synchronous counterparts, with the addition of the async suffix
in their names. The asynchronous I/O functions have the restriction that
only one (collective) asynchronous operation can be active at a time on a
given file handle. That is, an asynchronous I/O function must be completed
by calling upc_all_ftest_async or upc_all_fwait_async before another
asynchronous I/O function can be called on the same file handle. This re-
striction is similar to the restriction MPI-IO [MPI2] has on split-collective
I/O functions: only one split collective operation can be outstanding on an
MPI-IO file handle at any time.

7.8.1.3 Consistency and Atomicity Semantics

1 The consistency semantics define when the data written to a file by a thread
is visible to other threads. The atomicity semantics define the outcome of op-
erations in which multiple threads write concurrently to a file or shared buffer
and some of the writes overlap each other. For performance reasons, UPC-IO
uses weak consistency and atomicity semantics by default. The user can se-
lect stronger semantics either by opening the file with the flag UPC_STRONG_CA
or by calling upc_all_fcntl with the command UPC_SET_STRONG_CA_SEMANTICS.

2 The default (weak) semantics are as follows. The data written by a thread is
only guaranteed to be visible to another thread after all threads have called
upc_all_fclose or upc_all_fsync. (Note that the data may be visible to
other threads before the call to upc_all_fclose or upc_all_fsync and that
the data may become visible to different threads at different times.) Writes
from a given thread are always guaranteed to be visible to subsequent reads
by the same thread, even without an intervening call to upc_all_fclose or
upc_all_fsync. Byte-level data consistency is supported. So for example,
if thread 0 writes one byte at offset 0 in the file and thread 1 writes one byte
at offset 1 in the file, the data from both threads will get written to the file.
If concurrent writes from multiple threads overlap in the file, the resulting
data in the overlapping region is undefined. Similarly, if one thread tries to
read the data being concurrently written by another thread, the data that
gets read is undefined. Concurrent in this context means any two read/write

§7.8.1.3 Consistency and Atomicity Semantics 19

UPC Optional Library Specifications Version 1.3

operations to the same file handle with no intervening calls to upc_all_fsync
or upc_all_fclose.

3 For the functions that read into or write from a shared buffer using a common
file pointer, the weak consistency semantics are defined as follows. Each call
to upc_all_{fread,fwrite}_shared[_async] with a common file pointer
behaves as if the read/write operations were performed by a single, distinct,
anonymous thread which is different from any compute thread (and different
for each operation). In other words, NO file reads are guaranteed to see the
results of file writes using the common file pointer until after a close or sync
under the default weak consistency semantics.

4 By passing the UPC_STRONG_CA flag to upc_all_fopen or by calling upc_all_fcntl
with the command UPC_SET_STRONG_CA_SEMANTICS, the user selects strong
consistency and atomicity semantics. In this case, the data written by a
thread is visible to other threads as soon as the file write on the calling
thread returns. In the case of writes from multiple threads to overlapping
regions in the file, the result would be as if the individual write function
from each thread occurred atomically in some (unspecified) order. Overlap-
ping writes to a file in a single (list I/O) write function on a single thread
are not permitted (see Section 7.8.6). While strong consistency and atom-
icity semantics are selected on a given file handle, the flags argument to
all fread/fwrite functions on that handle is ignored and always treated as
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC.

5 The consistency semantics also define the outcome in the case of overlapping
reads into a shared buffer in memory when using individual file pointers or
list I/O functions. By default, the data in the overlapping space is undefined.
If the user selects strong consistency and atomicity, the result would be as if
the individual read functions from each thread occurred atomically in some
(unspecified) order. Overlapping reads into memory buffers in a single (list
I/O) read function on a single thread are not permitted (see Section 7.8.6).

6 Note that in strong consistency and atomicity mode, atomicity is guaranteed
at the UPC-IO function level. The entire operation specified by a single
function is performed atomically, regardless of whether it represents a single,
contiguous read/write or multiple noncontiguous reads or writes as in a list
I/O function.

7 EXAMPLE 1: three threads write data to a file concurrently, each with

20 Consistency and Atomicity Semantics §7.8.1.3

UPC Optional Library Specifications Version 1.3

a single list I/O function. The numbers indicate file offsets and brackets
indicate the boundaries of a listed vector. Each thread writes its own thread
id as the data values:

thread 0: {1 2 3} {5 6 7 8}
thread 1: {0 1 2}{3 4 5}
thread 2: {4 5 6} {8 9 10 11}

8 With the default weak semantics, the results in the overlapping locations are
undefined. Therefore, the result in the file would be the following, where x
represents undefined data.

File: 1 x x x x x x 0 x 2 2 2

9 That is, the data from thread 1 is written at location 0, the data from thread
0 is written at location 7, and the data from thread 2 is written at locations
9, 10, and 11, because none of these locations had overlapping writes. All
other locations had overlapping writes, and consequently, the result at those
locations is undefined.

10 If the file were opened with the UPC_STRONG_CA flag, strong consistency and
atomicity semantics would be in effect. The result, then, would depend on
the order in which the writes from the three threads actually occurred. Since
six different orderings are possible, there can be six outcomes. Let us assume,
for example, that the ordering was the write from thread 0, followed by the
write from thread 2, and then the write from thread 1. The (list I/O) write
from each thread happens atomically. Therefore, for this ordering, the result
would be:

File: 1 1 1 1 1 1 2 0 2 2 2 2

11 We note that if instead of using a single list I/O function each thread used
a separate function to write each contiguous portion, there would be six
write functions, two from each thread, and the atomicity would be at the
granularity of the write operation specified by each of those functions.

7.8.1.4 File Interoperability

1 UPC-IO does not specify how an implementation may store the data in a file
on the storage device. Accordingly, it is implementation-defined whether or
not a file created by UPC-IO can be directly accessed by using C/POSIX I/O
functions. However, the UPC-IO implementation must specify how the user

§7.8.1.4 File Interoperability 21

UPC Optional Library Specifications Version 1.3

can retrieve the file from the storage system as a linear sequence of bytes
and vice versa. Similarly, the implementation must specify how familiar
operations, such as the equivalent of POSIX ls, cp, rm, and mv can be
performed on the file.

7.8.2 Predefined Types

1 The following types are defined in <upc_io.h>

2 upc_off_t is a signed integral type that is capable of representing the size
of the largest file supported by the implementation.

3 upc_file_t is an opaque shared data type of incomplete type (as defined in
[ISO/IEC00 Sec 6.2.5]) that represents an open file handle.

4 upc_file_t objects are always manipulated via a pointer (that is, upc_file_t
*).

5 upc_file_t is a shared data type. It is allowed to pass a (upc_file_t
*) across threads, and two pointers to upc_file_t that reference the same
logical file handle will always compare equal.

Advice to implementors

6 The definition of upc_file_t does not restrict the implementation to store
all its metadata with affinity to one thread. Each thread can still have
local access to its metadata. For example, below is a simple approach an
implementation could use:

#include <upc.h>
#include <upc_io.h>
/* for a POSIX-based implementation */
typedef int my_internal_filehandle_t;

#ifdef _UPC_INTERNAL
typedef struct _local_upc_file_t {

my_internal_filehandle_t fd;
... other metadata ...

} local_upc_file_t;
#else

struct _local_upc_file_t;

22 Predefined Types §7.8.2

UPC Optional Library Specifications Version 1.3

#endif

typedef shared struct _local_upc_file_t upc_file_t;

upc_file_t *upc_all_fopen(...) {

upc_file_t *handles =
upc_all_alloc(THREADS, sizeof(upc_file_t));

/* get my handle */
upc_file_t *myhandle = &(handles[MYTHREAD]);

/* cast to a pointer-to-local */
local_upc_file_t* mylocalhandle = (local_upc_file_t*)myhandle;

/* setup my metadata using pointer-to-local */
mylocalhandle->fd = open(...);

...

return handles;
}

7 The basic idea is that the “handle” exposed to the user actually points to a
cyclic, distributed array. As a result, each thread has easy, local access to its
own internal handle metadata with no communication, while maintaining the
property that the handle that UPC-IO exposes to the client is a single-valued
pointer-to-shared. An additional advantage is that a thread can directly
access the metadata for other threads, which may occasionally be desirable
in the implementation.

7.8.3 UPC File Operations

Common Constraints

1 When a file is opened with an individual file pointer, each thread will get its
own file pointer and advance through the file at its own pace.

2 When a common file pointer is used, all threads positioned in the file will be

§7.8.3 UPC File Operations 23

UPC Optional Library Specifications Version 1.3

aligned with that common file pointer.

3 Common file pointers cannot be used in conjunction with pointers-to-local
(and hence cannot operate on private objects).

4 No function in this section may be called while an asynchronous operation
is pending on the file handle, except where otherwise noted.

7.8.3.1 The upc_all_fopen function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_file_t *upc_all_fopen(const char *fname, int flags,

size_t numhints, struct upc_hint const *hints);

Description

2 upc_all_fopen opens the file identified by the filename fname for input/output
operations.

3 The flags parameter specifies the access mode. The valid flags and their
meanings are listed below. Of these flags, exactly one of UPC_RDONLY, UPC_WRONLY,
or UPC_RDWR, and one of UPC_COMMON_FP or UPC_INDIVIDUAL_FP, must be
used. Other flags are optional. Multiple flags can be combined by using the
bitwise OR operator (|), and each flag has a unique bitwise representation
that can be unambiguously tested using the bitwise AND operator(&).

UPC_RDONLY Open the file in read-only mode

UPC_WRONLY Open the file in write-only mode

UPC_RDWR Open the file in read/write mode

UPC_INDIVIDUAL_FP Use an individual file pointer for all file accesses (other
than list I/O)

UPC_COMMON_FP Use the common file pointer for all file accesses (other than
list I/O)

UPC_APPEND Set the initial position of the file pointer to end of file. (The
file pointer is not moved to the end of file after each read/write)

UPC_CREATE Create the file if it does not already exist. If the named file
does not exist and this flag is not passed, the function fails with an

24 The upc_all_fopen function §7.8.3.1

UPC Optional Library Specifications Version 1.3

error.

UPC_EXCL Must be used in conjunction with UPC_CREATE. The open will fail
if the file already exists.

UPC_STRONG_CA Set strong consistency and atomicity semantics

UPC_TRUNC Open the file and truncate it to zero length. The file must be
opened before writing.

UPC_DELETE_ON_CLOSE Delete the file automatically on close

4 The UPC_COMMON_FP flag specifies that all accesses (except for the list I/O
operations) will use the common file pointer. The UPC_INDIVIDUAL_FP flag
specifies that all accesses will use individual file pointers (except for the list
I/O operations). Either UPC_COMMON_FP or UPC_INDIVIDUAL_FP must be
specified or upc_all_fopen will return an error.

5 The UPC_STRONG_CA flag specifies strong consistency and atomicity seman-
tics. The data written by a thread is visible to other threads as soon as
the write on the calling thread returns. In the case of writes from multiple
threads to overlapping regions in the file, the result would be as if the individ-
ual write function from each thread occurred atomically in some (unspecified)
order. In the case of overlapping reads into a shared buffer in memory when
using individual file pointers or list I/O functions, the result would be as if
the individual read functions from each thread occurred atomically in some
(unspecified) order.

6 If the flag UPC_STRONG_CA is not specified, weak semantics are provided. The
data written by a thread is only guaranteed to be visible to another thread
after all threads have called upc_all_fclose or upc_all_fsync. (Note that
the data may be visible to other threads before the call to upc_all_fclose
or upc_all_fsync and that the data may become visible to different threads
at different times.) Writes from a given thread are always guaranteed to be
visible to subsequent reads by the same thread, even without an intervening
call to upc_all_fclose or upc_all_fsync. Byte-level data consistency is
supported. For the purposes of atomicity and consistency semantics, each call
to upc_all_{fread,fwrite}_shared[_async] with a common file pointer
behaves as if the read/write operations were performed by a single, distinct,
anonymous thread which is different from any compute thread (and different

§7.8.3.1 The upc_all_fopen function 25

UPC Optional Library Specifications Version 1.3

for each operation).”7

7 Hints can be passed to the UPC-IO library as an array of key-value pairs8

of strings. numhints specifies the number of hints in the hints array; if
numhints is zero, the hints pointer is ignored. The user can free the hints
array and associated character strings as soon as the open call returns. The
following type is defined in <upc_io.h>:

struct upc_hint

holds each element of the hints array and contain at least the following
initial members, in this order.

const char *key;
const char *value;

8 upc_all_fopen defines a number hints. An implementation is free to support
additional hints. An implementation is free to ignore any hint provided by the
user. Implementations should silently ignore any hints they do not support
or recognize. The predefined hints and their meanings are defined below.
An implementation is not required to interpret these hint keys, but if it
does interpret the hint key, it must provide the functionality described. All
hints are single-valued character strings (the content is single-valued, not the
location).

access_style (comma-separated list of strings): indicates the manner in
which the file is expected to be accessed. The hint value is a comma-
separated list of any the following: “read_once", “write_once", “read_mostly",
“write_mostly", “sequential", and “random". Passing such a hint does
not place any constraints on how the file may actually be accessed by
the program, although accessing the file in a way that is different from
the specified hint may result in lower performance.

collective_buffering (boolean): specifies whether the application may
benefit from collective buffering optimizations. Allowed values for this
key are “true” and “false”. Collective buffering parameters can be fur-
ther directed via additional hints: cb_buffer_size, and cb_nodes.

cb_buffer_size (decimal integer): specifies the total buffer space that the
7In other words, NO reads are guaranteed to see the results of writes using the common

file pointer until after a close or sync when UPC_STRONG_CA is not specified.
8The contents of the key/value pairs passed by all the threads must be single-valued.

26 The upc_all_fopen function §7.8.3.1

UPC Optional Library Specifications Version 1.3

implementation can use on each thread for collective buffering.

cb_nodes (decimal integer): specifies the number of target threads or I/O
nodes to be used for collective buffering.

file_perm (string): specifies the file permissions to use for file creation. The
set of allowed values for this key is implementation defined.

io_node_list (comma separated list of strings): specifies the list of I/O
devices that should be used to store the file and is only relevant when
the file is created.

nb_proc (decimal integer): specifies the number of threads that will typically
be used to run programs that access this file and is only relevant when
the file is created.

striping_factor (decimal integer): specifies the number of I/O devices
that the file should be striped across and is relevant only when the file
is created.

start_io_device (decimal integer): specifies the number of the first I/O
device from which to start striping the file and is relevant only when
the file is created.

striping_unit (decimal integer): specifies the striping unit to be used for
the file. The striping unit is the amount of consecutive data assigned
to one I/O device before progressing to the next device, when striping
across a number of devices. It is expressed in bytes. This hint is
relevant only when the file is created.

9 A file on the storage device is in the open state from the beginning of a
successful open call to the end of the matching successful close call on the
file handle. It is erroneous to have the same file open simultaneously with
two upc_all_fopen calls, or with a upc_all_fopen call and a POSIX/C
open or fopen call.

10 The user is responsible for ensuring that the file referenced by the fname
argument refers to a single UPC-IO file. The actual argument passed on
each thread may be different because the file name spaces may be different
on different threads, but they must all refer to the same logical UPC-IO file.

11 On success, the function returns a pointer to a file handle that can be used
to perform other operations on the file.

§7.8.3.1 The upc_all_fopen function 27

UPC Optional Library Specifications Version 1.3

12 upc_all_fopen provides single-valued errors - if an error occurs, the function
returns NULL on ALL threads, and sets errno appropriately to the same value
on all threads.

7.8.3.2 The upc_all_fclose function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fclose (upc_file_t *fd);

Description

2 upc_all_fclose executes an implicit upc_all_fsync on fd and then closes
the file associated with fd.

3 The function returns 0 on success. If fd is not valid or if an outstanding
asynchronous operation on fd has not been completed, the function will
return an error.

4 upc_all_fclose provides single-valued errors - if an error occurs, the func-
tion returns –1 on ALL threads, and sets errno appropriately to the same
value on all threads.

5 After a file has been closed with upc_all_fclose, the file is allowed to be
opened and the data in it can be accessed by using regular C/POSIX I/O
calls.

7.8.3.3 The upc_all_fsync function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fsync(upc_file_t *fd);

Description

2 upc_all_fsync ensures that any data that has been written to the file asso-
ciated with fd but not yet transferred to the storage device is transferred to
the storage device. It also ensures that subsequent file reads from any thread
will see any previously written values (that have not yet been overwritten).

3 There is an implied barrier immediately before upc_all_fsync returns.

28 The upc_all_fclose function §7.8.3.2

UPC Optional Library Specifications Version 1.3

4 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.8.3.4 The upc_all_fseek function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fseek(upc_file_t *fd, upc_off_t offset,

int origin);

Description

2 upc_all_fseek sets the current position of the file pointer associated with
fd.

3 This offset can be relative to the current position of the file pointer, to the
beginning of the file, or to the end of the file. The offset can be negative,
which allows seeking backwards.

4 The origin parameter can be specified as UPC_SEEK_SET, UPC_SEEK_CUR, or
UPC_SEEK_END, respectively, to indicate that the offset must be computed
from the beginning of the file, the current location of the file pointer, or the
end of the file.

5 In the case of a common file pointer, all threads must specify the same offset
and origin. In the case of an individual file pointer, each thread may specify
a different offset and origin.

6 It is allowed to seek past the end of file. It is erroneous to seek to a negative
position in the file. See the Common Constraints number 5 at the beginning
of Section 7.8.3 for more details.

7 The current position of the file pointer can be determined by calling upc_all_fseek(fd,
0, UPC_SEEK_CUR).

8 On success, the function returns the current location of the file pointer in
bytes. If there is an error, it returns –1 and sets errno appropriately.

7.8.3.5 The upc_all_fset_size function

Synopsis

1

§7.8.3.4 The upc_all_fseek function 29

UPC Optional Library Specifications Version 1.3

#include <upc.h>
#include <upc_io.h>
int upc_all_fset_size(upc_file_t *fd, upc_off_t size);

Description

2 upc_all_fset_size executes an implicit upc_all_fsync on fd and resizes
the file associated with fd. The file handle must be open for writing.

3 size is measured in bytes from the beginning of the file.

4 If size is less than the current file size, the file is truncated at the position
defined by size. The implementation is free to deallocate file blocks located
beyond this position.

5 If size is greater than the current file size, the file size increases to size.
Regions of the file that have been previously written are unaffected. The
values of data in the new regions in the file (between the old size and size)
are undefined.

6 If this function truncates a file, it is possible that the individual and common
file pointers may point beyond the end of file. This is allowed and is equivalent
to seeking past the end of file (see the Common Constraints in Section 7.8.3
for the semantics of seeking past the end of file).

7 It is unspecified whether and under what conditions this function actually
allocates file space on the storage device. Use upc_all_fpreallocate to
force file space to be reserved on the storage device.

8 Calling this function does not affect the individual or common file pointers.

9 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.8.3.6 The upc_all_fget_size function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fget_size(upc_file_t *fd);

Description

2 upc_all_fget_size returns the current size in bytes of the file associated

30 The upc_all_fget_size function §7.8.3.6

UPC Optional Library Specifications Version 1.3

with fd on success. On error, it returns –1 and sets errno appropriately.

7.8.3.7 The upc_all_fpreallocate function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fpreallocate(upc_file_t *fd, upc_off_t size);

Description

2 upc_all_fpreallocate ensures that storage space is allocated for the first
size bytes of the file associated with fd. The file handle must be open for
writing.

3 Regions of the file that have previously been written are unaffected. For
newly allocated regions of the file, upc_all_fpreallocate has the same
effect as writing undefined data.

4 If size is greater than the current file size, the file size increases to size. If
size is less than or equal to the current file size, the file size is unchanged.

5 Calling this function does not affect the individual or common file pointers.

6 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.8.3.8 The upc_all_fcntl function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fcntl(upc_file_t *fd, int cmd, void *arg);

Description

2 upc_all_fcntl performs one of various miscellaneous operations related to
the file specified by fd, as determined by cmd. The valid commands cmd and
their associated argument arg are explained below.

UPC_GET_CA_SEMANTICS Get the current consistency and atomicity seman-
tics for fd. The argument arg is ignored. The return value is UPC_STRONG_CA
for strong consistency and atomicity semantics and 0 for the default
weak consistency and atomicity semantics.

§7.8.3.7 The upc_all_fpreallocate function 31

UPC Optional Library Specifications Version 1.3

UPC_SET_WEAK_CA_SEMANTICS Executes an implicit upc_all_fsync on fd
and sets fd to use the weak consistency and atomicity semantics (or
leaves the mode unchanged if that mode is already selected). The
argument arg is ignored. The return value is 0 on success. On error,
this function returns -1 and sets errno appropriately.

UPC_SET_STRONG_CA_SEMANTICS Executes an implicit upc_all_fsync on
fd and sets fd to use the strong consistency and atomicity semantics
(or leaves the mode unchanged if that mode is already selected). The
argument arg is ignored. The return value is 0 on success. On error,
this function returns -1 and sets errno appropriately.

UPC_GET_FP Get the type of the current file pointer for fd. The argument
arg is ignored. The return value is either UPC_COMMON_FP in case of a
common file pointer, or UPC_INDIVIDUAL_FP for individual file pointers.

UPC_SET_COMMON_FP Executes an implicit upc_all_fsync on fd, sets the
current file access pointer mechanism for fd to a common file pointer
(or leaves it unchanged if that mode is already selected), and seeks to
the beginning of the file. The argument arg is ignored. The return
value is 0 on success. On error, this function returns -1 and sets errno
appropriately.

UPC_SET_INDIVIDUAL_FP Executes an implicit upc_all_fsync on fd, sets
the current file access pointer mechanism for fd to an individual file
pointer (or leaves the mode unchanged if that mode is already selected),
and seeks to the beginning of the file. The argument arg is ignored.
The return value is 0 on success. On error, this function returns -1 and
sets errno appropriately.

UPC_GET_FL Get all the flags specified during the upc_all_fopen call for fd,
as modified by any subsequent mode changes using the upc_all_fcntl(UPC_SET_*)
commands. The argument arg is ignored. The return value has same
format as the flags parameter in upc_all_fopen.

UPC_GET_FN Get the file name provided by each thread in the upc_all_fopen
call that created fd. The argument arg is a valid (const char**)
pointing to a (const char*) location in which a pointer to file name
will be written. Writes a (const char*) into *arg pointing to the file-
name in implementation-maintained read-only memory, which will re-

32 The upc_all_fcntl function §7.8.3.8

UPC Optional Library Specifications Version 1.3

main valid until the file handle is closed or until the next upc_all_fcntl
call on that file handle.

UPC_GET_HINTS Retrieve the hints applicable to fd. The argument arg
is a valid (const upc_hint_t**) pointing to a (const upc_hint_t*)
location in which a pointer to the hints array will be written. Writes a
(const upc_hint_t*) into *arg pointing to an array of upc_hint_t’s
in implementation-maintained read-only memory, which will remain
valid until the file handle is closed or until the next upc_all_fnctl
call on that file handle. The number of hints in the array is returned
by the call. The hints in the array may be a subset of those specified
at file open time, if the implementation ignored some unrecognized or
unsupported hints.

UPC_SET_HINT Executes an implicit upc_all_fsync on fd and sets a new
hint to fd. The argument arg points to one single-valued upc_hint_t
hint to be applied. If the given hint key has already been applied to
fd, the current value for that hint is replaced with the provided value.
The return value is 0 on success. On error, this function returns -1 and
sets errno appropriately.

UPC_ASYNC_OUTSTANDING Returns 1 if there is an asynchronous operation
outstanding on fd, or 0 otherwise.

3 In case of a non valid fd, upc_all_fcntl returns -1 and sets errno appro-
priately.

4 It is allowed to call upc_all_fcntl(UPC_ASYNC_OUTSTANDING) when an asyn-
chronous operation is outstanding (but it is still disallowed to call upc_all_fcntl
with any other argument when an asynchronous operation is outstanding).

7.8.4 Reading Data

Common Constraints

1 No function in this section 7.8.4 may be called while an asynchronous oper-
ation is pending on the file handle.

7.8.4.1 The upc_all_fread_local function

Synopsis

§7.8.4 Reading Data 33

UPC Optional Library Specifications Version 1.3

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_local(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_local reads data from a file into a local buffer on each
thread.

3 This function can be called only if the current file pointer type is an individual
file pointer, and the file handle is open for reading.

4 buffer is a pointer to an array into which data will be read, and each thread
may pass a different value for buffer.

5 Each thread reads (size*nmemb) bytes of data from the file at the position
indicated by its individual file pointer into the buffer. Each thread may pass
a different value for size and nmemb. If size or nmemb is zero, the buffer
argument is ignored and that thread performs no I/O.

6 On success, the function returns the number of bytes read into the local
buffer of the calling thread, and the individual file pointer of the thread
is incremented by that amount. On error, it returns –1 and sets errno
appropriately.

7.8.4.2 The upc_all_fread_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_shared(upc_file_t *fd,

shared void *buffer, size_t blocksize, size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_shared reads data from a file into a shared buffer in mem-
ory.

3 The function can be called when the current file pointer type is either a
common file pointer or an individual file pointer. The file handle must be
open for reading.

34 The upc_all_fread_shared function §7.8.4.2

UPC Optional Library Specifications Version 1.3

4 buffer is a pointer to an array into which data will be read. It must be
a pointer to shared data and may have affinity to any thread. blocksize
is the block size of the shared buffer in elements (of size bytes each). A
blocksize of 0 indicates an indefinite blocking factor.

5 In the case of individual file pointers, the following rules apply: Each thread
may pass a different address for the buffer parameter. Each thread reads
(size*nmemb) bytes of data from the file at the position indicated by its
individual file pointer into its buffer. Each thread may pass a different value
for blocksize, size and nmemb. If size or nmemb is zero, the buffer argu-
ment is ignored and that thread performs no I/O. On success, the function
returns the number of bytes read by the calling thread, and the individual
file pointer of the thread is incremented by that amount.

6 In the case of a common file pointer, the following rules apply: All threads
must pass the same address for the buffer parameter, and the same value
for blocksize, size and nmemb. The effect is that (size*nmemb) bytes of
data are read from the file at the position indicated by the common file
pointer into the buffer. If size or nmemb is zero, the buffer argument is
ignored and the operation has no effect. On success, the function returns
the total number of bytes read by all threads, and the common file pointer
is incremented by that amount.

7 If reading with individual file pointers results in overlapping reads into the
shared buffer, the result is determined by whether the file was opened with
the UPC_STRONG_CA flag or not (see Section 7.8.3.1).

8 The function returns –1 on error and sets errno appropriately.

7.8.5 Writing Data

Common Constraints

1 No function in this section 7.8.5 may be called while an asynchronous oper-
ation is pending on the file handle.

7.8.5.1 The upc_all_fwrite_local function

Synopsis

1

§7.8.5 Writing Data 35

UPC Optional Library Specifications Version 1.3

#include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_local(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_local writes data from a local buffer on each thread into
a file.

3 This function can be called only if the current file pointer type is an individual
file pointer, and the file handle is open for writing.

4 buffer is a pointer to an array from which data will be written, and each
thread may pass a different value for buffer.

5 Each thread writes (size*nmemb) bytes of data from the buffer to the file at
the position indicated by its individual file pointer. Each thread may pass
a different value for size and nmemb. If size or nmemb is zero, the buffer
argument is ignored and that thread performs no I/O.

6 If any of the writes result in overlapping accesses in the file, the result is
determined by the current consistency and atomicity semantics mode in effect
for fd (see 7.8.3.1).

7 On success, the function returns the number of bytes written by the calling
thread, and the individual file pointer of the thread is incremented by that
amount. On error, it returns –1 and sets errno appropriately.

7.8.5.2 The upc_all_fwrite_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_shared(upc_file_t *fd,

shared void *buffer, size_t blocksize, size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_shared writes data from a shared buffer in memory to a
file.

3 The function can be called if the current file pointer type is either a common

36 The upc_all_fwrite_shared function §7.8.5.2

UPC Optional Library Specifications Version 1.3

file pointer or an individual file pointer. The file handle must be open for
writing.

4 buffer is a pointer to an array from which data will be written. It must be
a pointer to shared data and may have affinity to any thread. blocksize
is the block size of the shared buffer in elements (of size bytes each). A
blocksize of 0 indicates an indefinite blocking factor.

5 In the case of individual file pointers, the following rules apply: Each thread
may pass a different address for the buffer parameter. Each thread writes
(size*nmemb) bytes of data from its buffer to the file at the position indicated
by its individual file pointer. Each thread may pass a different value for
blocksize, size and nmemb. If size or nmemb is zero, the buffer argument
is ignored and that thread performs no I/O. On success, the function returns
the number of bytes written by the calling thread, and the individual file
pointer of the thread is incremented by that amount.

6 In the case of a common file pointer, the following rules apply: All threads
must pass the same address for the buffer parameter, and the same value
for blocksize, size and nmemb. The effect is that (size*nmemb) bytes
of data are written from the buffer to the file at the position indicated by
the common file pointer. If size or nmemb is zero, the buffer argument is
ignored and the operation has no effect. On success, the function returns the
total number of bytes written by all threads, and the common file pointer is
incremented by that amount.

7 If writing with individual file pointers results in overlapping accesses in the
file, the result is determined by the current consistency and atomicity seman-
tics mode in effect for fd (see Section 7.8.3.1).

8 The function returns –1 on error and sets errno appropriately.

7.8.6 List I/O

Common Constraints

1 List I/O functions take a list of addresses/offsets and corresponding lengths
in memory and file to read from or write to.

2 List I/O functions can be called regardless of whether the current file pointer
type is individual or common.

§7.8.6 List I/O 37

UPC Optional Library Specifications Version 1.3

3 File pointers are not updated as a result of a list I/O read/write operation.

4 Types declared in <upc_io.h> are

struct upc_local_memvec

which contains at least the initial members, in this order:

void *baseaddr;
size_t len;

and is a memory vector element pointing to a contiguous region of local
memory.

5 struct upc_shared_memvec

which contains at least the initial members, in this order:

shared void *baseaddr;
size_t blocksize;
size_t len;

and is a memory vector element pointing to a blocked region of shared mem-
ory.

6 struct upc_filevec

which contains at least the initial members, in this order:

upc_off_t offset;
size_t len;

and is a file vector element pointing to a contiguous region of a file.

For all cases these vector element types specify regions which are len bytes
long. If len is zero, the entry is ignored. blocksize is the block size of the
shared buffer in bytes. A blocksize of 0 indicates an indefinite blocking
factor.

7 The memvec argument passed to any list I/O read function by a single thread
must not specify overlapping regions in memory.

8 The base addresses passed to memvec can be in any order.

9 The filevec argument passed to any list I/O write function by a single
thread must not specify overlapping regions in the file.

10 The offsets passed in filevec must be in monotonically non-decreasing order.

38 List I/O §7.8.6

UPC Optional Library Specifications Version 1.3

11 No function in this section (7.8.6) may be called while an asynchronous op-
eration is pending on the file handle.

12 No function in this section (7.8.6) implies the presence of barriers at entry
or exit. However, the programmer is advised to use a barrier after call-
ing upc_all_fread_list_shared to ensure that the entire shared buffer has
been filled up, and similarly, use a barrier before calling upc_all_fwrite_list_shared
to ensure that the entire shared buffer is up-to-date before being written to
the file.

13 For all the list I/O functions, each thread passes an independent set of mem-
ory and file vectors. Passing the same vectors on two or more threads spec-
ifies redundant work. The file pointer is a single-valued argument, all other
arguments to the list I/O functions are NOT single-valued.

14 EXAMPLE 1: a collective list I/O read operation. The list I/O functions
allow the user to specify noncontiguous accesses both in memory and file in
the form of lists of explicit offsets and lengths in the file and explicit address
and lengths in memory. None of the file pointers are used or updated in this
case.

#include <upc.h>
#include <upc_io.h>
char buffer[12];
struct upc_local_memvec memvec[2] = {(&buffer[0],4},{&buffer[7],3}};
struct upc_filevec filevec[2];
upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL);
filevec[0].offset = MYTHREAD*5;
filevec[0].len = 2;
filevec[1].offset = 10+MYTHREAD*5;
filevec[1].len = 5;

upc_all_fread_list_local(fd, 2, &memvec, 2, &filevec,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.8.6.1 The upc_all_fread_list_local function

Synopsis

§7.8.6.1 The upc_all_fread_list_local function 39

UPC Optional Library Specifications Version 1.3

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_list_local(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_local reads data from a file into local buffers in mem-
ory. The file handle must be open for reading.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

4 The result is as if data were read in order from the list of locations specified by
filevec and placed in memory in the order specified by the list of locations
in memvec. The total amount of data specified by memvec must equal the
total amount of data specified by filevec.

5 On success, the function returns the number of bytes read by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.6.2 The upc_all_fread_list_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_list_shared(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_shared reads data from a file into various locations of
a shared buffer in memory. The file handle must be open for reading.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored

40 The upc_all_fread_list_shared function §7.8.6.2

UPC Optional Library Specifications Version 1.3

and no locations are specified for I/O.

4 The result is as if data were read in order from the list of locations specified by
filevec and placed in memory in the order specified by the list of locations
in memvec. The total amount of data specified by memvec must equal the
total amount of data specified by filevec.

5 If any of the reads from different threads result in overlapping regions in
memory, the result is determined by the current consistency and atomicity
semantics mode in effect for fd (see Section 7.8.3.1).

6 On success, the function returns the number of bytes read by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.6.3 The upc_all_fwrite_list_local function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_list_local(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_local writes data from local buffers in memory to a
file. The file handle must be open for writing.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

4 The result is as if data were written from memory locations in the order
specified by the list of locations in memvec to locations in the file in the
order specified by the list in filevec. The total amount of data specified by
memvec must equal the total amount of data specified by filevec.

5 If any of the writes from different threads result in overlapping accesses in
the file, the result is determined by the current consistency and atomicity
semantics mode in effect for fd (see Section 7.8.3.1).

§7.8.6.3 The upc_all_fwrite_list_local function 41

UPC Optional Library Specifications Version 1.3

6 On success, the function returns the number of bytes written by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.6.4 The upc_all_fwrite_list_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_list_shared(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_shared writes data from various locations of a shared
buffer in memory to a file. The file handle must be open for writing.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

4 The result is as if data were written from memory locations in the order
specified by the list of locations in memvec to locations in the file in the
order specified by the list in filevec. The total amount of data specified by
memvec must equal the total amount of data specified by filevec.

5 If any of the writes from different threads result in overlapping accesses in
the file, the result is determined by the current consistency and atomicity
semantics mode in effect for fd (see Section 7.8.3.1).

6 On success, the function returns the number of bytes written by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.7 Asynchronous I/O

Common Constraints

1 Only one asynchronous I/O operation can be outstanding on a UPC-IO file
handle at any time. If an application attempts to initiate a second asyn-

42 The upc_all_fwrite_list_shared function §7.8.6.4

UPC Optional Library Specifications Version 1.3

chronous I/O operation while one is still outstanding on the same file handle
the behavior is undefined – however, high-quality implementations will issue
a fatal error.

2 For asynchronous read operations, the contents of the destination memory are
undefined until after a successful upc_all_fwait_async or
upc_all_ftest_async on the file handle. For asynchronous write opera-
tions, the source memory may not be safely modified until after a successful
upc_all_fwait_async or upc_all_ftest_async on the file handle.

3 An implementation is free to block for completion of an operation in the
asynchronous initiation call or in the upc_all_ftest_async call (or both).
High-quality implementations are recommended to minimize the amount of
time spent within the asynchronous initiation or upc_all_ftest_async call.

4 In the case of list I/O functions, the user may modify or free the lists after
the asynchronous I/O operation has been initiated.

5 The semantics of the flags of type upc_flag_t when applied to the async vari-
ants of the fread/fwrite functions should be interpreted as follows: constraints
that reference entry to a function call correspond to entering the fread_async-
/fwrite_async call that initiates the asynchronous operation, and constraints
that reference returning from a function call correspond to returning from the
upc_all_fwait_async() or successful upc_all_ftest_async() call that
completes the asynchronous operation. Also, note that the flags which govern
an asynchronous operation are passed to the library during the asynchronous
initiation call.

7.8.7.1 The upc_all_fread_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_local_async(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_local_async initiates an asynchronous read from a file into
a local buffer on each thread.

3 The meaning of the parameters and restrictions are the same as for the

§7.8.7.1 The upc_all_fread_local_async function 43

UPC Optional Library Specifications Version 1.3

blocking function, upc_all_fread_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.2 The upc_all_fread_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_shared_async(upc_file_t *fd,

shared void *buffer, size_t blocksize, size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_shared_async initiates an asynchronous read from a file
into a shared buffer.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fread_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.3 The upc_all_fwrite_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_local_async(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_local_async initiates an asynchronous write from a local
buffer on each thread to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

44 The upc_all_fread_shared_async function §7.8.7.2

UPC Optional Library Specifications Version 1.3

7.8.7.4 The upc_all_fwrite_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_shared_async(upc_file_t *fd,

shared void *buffer, size_t blocksize,size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_shared_async initiates an asynchronous write from a shared
buffer to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.5 The upc_all_fread_list_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_list_local_async(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_local_async initiates an asynchronous read of data
from a file into local buffers in memory.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fread_list_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

§7.8.7.4 The upc_all_fwrite_shared_async function 45

UPC Optional Library Specifications Version 1.3

7.8.7.6 The upc_all_fread_list_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_list_shared_async(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_shared_async initiates an asynchronous read of data
from a file into various locations of a shared buffer in memory.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fread_list_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.7 The upc_all_fwrite_list_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_list_local_async(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_local_async initiates an asynchronous write of data
from local buffers in memory to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_list_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

46 The upc_all_fread_list_shared_async function §7.8.7.6

UPC Optional Library Specifications Version 1.3

7.8.7.8 The upc_all_fwrite_list_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_list_shared_async(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_shared_async initiates an asynchronous write of data
from various locations of a shared buffer in memory to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_list_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.9 The upc_all_fwait_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwait_async(upc_file_t *fd)

Description

2 upc_all_fwait_async completes the previously issued asynchronous I/O
operation on the file handle fd, blocking if necessary.

3 It is erroneous to call this function if there is no outstanding asynchronous
I/O operation associated with fd.

4 On success, the function returns the number of bytes read or written by
the asynchronous I/O operation as specified by the blocking variant of the
function used to initiate the asynchronous operation. On error, it returns –1
and sets errno appropriately, and the outstanding asynchronous operation
(if any) becomes no longer outstanding.

§7.8.7.8 The upc_all_fwrite_list_shared_async function 47

UPC Optional Library Specifications Version 1.3

7.8.7.10 The upc_all_ftest_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_ftest_async(upc_file_t *fd, int *flag)

Description

2 upc_all_ftest_async tests whether the outstanding asynchronous I/O op-
eration associated with fd has completed.

3 If the operation has completed, the function sets flag=1 and the asyn-
chronous operation becomes no longer outstanding;9 otherwise it sets flag=0.
The same value of flag is set on all threads.

4 If the operation was completed, the function returns the number of bytes
that were read or written as specified by the blocking variant of the function
used to initiate the asynchronous operation. On error, it returns –1 and sets
errno appropriately, and sets the flag=1, and the outstanding asynchronous
operation (if any) becomes no longer outstanding.

5 It is erroneous to call this function if there is no outstanding asynchronous
I/O operation associated with fd.

9This implies it is disallowed to call upc_all_fwait_async or upc_all_ftest_async
immediately after a successful upc_all_ftest_async on that file handle.

48 The upc_all_ftest_async function §7.8.7.10

UPC Optional Library Specifications Version 1.3

7.9 UPC Non-Blocking Transfer Operations <upc_nb.h>

1 Implementations that support this interface shall predefine the feature macro
__UPC_NB__ to the value 1.

7.9.1 Standard header

1 The standard header is

<upc_nb.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.9 are declared by the header <upc_nb.h>.

7.9.2 Common Requirements

1 The following requirements apply to all of the functions defined in Section 7.9.

2 This section defines extensions to the upc_mem* functions defined in [UPC
Language Specifications, Section 7.2.5]. Data transfer effects are as specified
in that document.

3 <upc_nb.h> defines two non-blocking variants for each upc_mem* function.
The _nb function name suffix denotes the explicit-handle variant, whereas
the _nbi function name suffix denotes the implicit-handle variant. These
functions are jointly referred to as transfer initiation functions. A thread
which invokes one of these functions is referred to as the initiating thread for
the transfer.

4 A transfer initiation function returns as soon as possible after initiating the
transfer and may return prior to the effects of the transfer being completed. 10

10 Each call to a transfer initiation function shall either initiate an asynchronous
transfer or perform the transfer synchronously within the initiation call (and return
UPC_COMPLETE_HANDLE in the case of an explicit-handle initiation). The conditions gov-
erning this decision are unspecified. For example, an implementation might choose to
perform a synchronous transfer when all affected memory has affinity to the initiating
thread. Implementations are encouraged to perform asynchronous transfers and return
quickly whenever possible to allow the caller to overlap unrelated computation and com-

§7.9 UPC Non-Blocking Transfer Operations <upc_nb.h> 49

UPC Optional Library Specifications Version 1.3

Generally the initiating thread must later take explicit action to synchronize
the completion of the transfer.

5 The explicit-handle variant returns a handle that gives the initiating thread
explicit control and responsibility to manage completion of the transfer. The
initiating thread shall eventually invoke a successful upc_sync[_attempt]
function call upon each such handle, to synchronize completion of the asso-
ciated transfer and allow the implementation to reclaim resources that may
be associated with the handle.

6 The implicit-handle variant allows the program to synchronize completion of
an implicit group of transfers together, at the next call to upc_synci[_attempt]
by the initiating thread.

7 Each call entry to a transfer initiation function defines the beginning of an
abstract interval referred to as the transfer interval for the transfer opera-
tion being performed. The transfer interval extends until the return of the
successful upc_sync[_attempt] or upc_synci[_attempt] call which syn-
chronizes the completion of the transfer.

8 Each non-blocking transfer proceeds independently of all other operations
and actions by any thread until the end of the transfer interval. In particular,
the transfer interval may extend beyond strict operations and other forms of
inter-thread synchronization.

9 The order in which non-blocking transfers complete is unspecified - the im-
plementation may coalesce and/or reorder non-blocking operations with re-
spect to other blocking or non-blocking operations, or operations initiated
from a separate thread. The only ordering guarantees are those explicitly
enforced using the synchronization functions, i.e. all the accesses comprising
the transfer are guaranteed to occur during the transfer interval.

10 Throughout the transfer interval, the contents of all destination memory
specified by the transfer are undefined. Specifically, concurrent reads to
these locations from any thread will observe an indeterminate value.

11 If any of the source or destination memory specified by a transfer is modified
by any thread during the transfer interval, then the results of the transfer
are undefined. Specifically, concurrent writes to these locations will result in
indeterminate values in the destination memory which persist after synchro-

munication.

50 Common Requirements §7.9.2

UPC Optional Library Specifications Version 1.3

nization.

12 The source memory specified in a transfer is not modified by the transfer.
Concurrent reads of source memory areas by any thread are permitted and
behave as usual. Multiple concurrent transfers initiated by any thread are
permitted to specify overlapping source memory areas. If a transfer specifies
destination memory which overlaps its own source, or the source or destina-
tion of a concurrent transfer initiated by any thread, the resulting values in
all destination memory specified by the affected transfers are indeterminate.

13 The memory consistency semantics of all transfers performed by the library
are as described in [UPC Language Specifications, Section B.3.2.1]. Specifi-
cally, the effect on conflicting accesses issued outside the transfer interval is
as if the transfer were performed by a set of relaxed shared reads and re-
laxed shared writes of unspecified size and order, issued at unspecified times
anywhere within the transfer interval by the initiating thread. Conflicting
accesses inside the transfer interval have undefined results, as specified in
the preceding paragraphs. 11 Here inside and outside are defined by the
Precedes() program order for accesses issued by the initiating thread; ac-
cesses issued by other threads are considered inside unless every possible and
valid <𝑠𝑡𝑟𝑖𝑐𝑡 relationship orders them outside the transfer interval. 12

11The restrictions described in the three preceding paragraphs are a direct consequence
of [UPC Language Specifications, Section B.3.2.1], and also apply to the blocking upc_mem*
functions. They are explicitly stated here for clarity.

12 Stated differently, a successful upc_sync[_attempt] or upc_synci[_attempt] call
completes transfers with respect to the initiating thread, and subsequent relaxed accesses
issued by the initiating thread are guaranteed to observe the effects of the synchronized
transfer(s).

Similarly, a successful upc_sync[_attempt] or upc_synci[_attempt] call followed by
a strict operation ensures the effects of the synchronized transfer(s) will be observed by
all threads prior to observing the strict operation.

§7.9.2 Common Requirements 51

UPC Optional Library Specifications Version 1.3

7.9.3 Explicit Handle Type

1 An implementation shall define the following type and value:

type upc_handle_t
value UPC_COMPLETE_HANDLE

2 UPC_COMPLETE_HANDLE shall have type upc_handle_t. All of its bits shall
be 0.

3 Any handle value other than UPC_COMPLETE_HANDLE is valid only for the
initiating thread which obtained it from an explicit-handle transfer initiation
function. Different threads shall not use it for any purpose.

4 Every handle value returned from an explicit-handle transfer initiation func-
tion call shall eventually be passed to a successful upc_sync[_attempt] call.
It is an error to discard a handle value and never synchronize it unless the
value is UPC_COMPLETE_HANDLE.

5 Once a handle value is successfully synchronized, it becomes invalid and shall
not be used for any purpose.

52 Explicit Handle Type §7.9.3

UPC Optional Library Specifications Version 1.3

7.9.4 Explicit-handle transfer initiation functions

7.9.4.1 The upc_memcpy_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memcpy_nb(shared void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memcpy_nb(dst, src, n) shall have the same
effects as upc_memcpy(dst, src, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

4 The following two code sequences demonstrate the relationship between upc_memcpy
and upc_memcpy_nb. Both transfers ultimately result in the same data move-
ment.

upc_memcpy(dst, src, n); // perform an explicitly synchronous transfer
... // code that may access dst and src regions
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

upc_handle_t handle = upc_memcpy_nb(dst, src, n); // initiate a transfer
... // code that must not read dst region or modify either region
upc_sync(handle); // sync the handle, ending the transfer interval
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

§7.9.4 Explicit-handle transfer initiation functions 53

UPC Optional Library Specifications Version 1.3

7.9.4.2 The upc_memget_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memget_nb(void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memget_nb(dst, src, n) shall have the same
effects as upc_memget(dst, src, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

7.9.4.3 The upc_memput_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memput_nb(shared void * restrict dst,

const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memput_nb(dst, src, n) shall have the same
effects as upc_memput(dst, src, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

54 The upc_memget_nb function §7.9.4.2

UPC Optional Library Specifications Version 1.3

7.9.4.4 The upc_memset_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memset_nb(shared void *dst, int c, size_t n);

Description

2 The transfer initiated by upc_memset_nb(dst, c, n) shall have the same ef-
fects as upc_memset(dst, c, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

§7.9.4.4 The upc_memset_nb function 55

UPC Optional Library Specifications Version 1.3

7.9.5 Implicit-handle transfer initiation functions

7.9.5.1 The upc_memcpy_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memcpy_nbi(shared void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memcpy_nbi(dst, src, n) shall have the same
effects as upc_memcpy(dst, src, n). The transfer interval extends until
the return of the next successful upc_synci[_attempt] call performed by
the initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

4 The following two code sequences demonstrate the relationship between upc_memcpy
and upc_memcpy_nbi. Both transfers ultimately result in the same data
movement.

upc_memcpy(dst, src, n); // perform an explicitly synchronous transfer
... // code that may access dst and src regions
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

upc_memcpy_nbi(dst, src, n); // initiate a transfer
... // code that must not read dst region or modify either region
upc_synci(); // sync all implicit-handle ops, ending the transfer interval(s)
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

56 Implicit-handle transfer initiation functions §7.9.5

UPC Optional Library Specifications Version 1.3

7.9.5.2 The upc_memget_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memget_nbi(void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memget_nbi(dst, src, n) shall have the same
effects as upc_memget(dst, src, n). The transfer interval extends until
the return of the next successful upc_synci[_attempt] call performed by
the initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

7.9.5.3 The upc_memput_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memput_nbi(shared void * restrict dst,

const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memput_nbi(dst, src, n) shall have the same
effects as upc_memput(dst, src, n). The transfer interval extends until
the return of the next successful upc_synci[_attempt] call performed by
the initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

§7.9.5.2 The upc_memget_nbi function 57

UPC Optional Library Specifications Version 1.3

7.9.5.4 The upc_memset_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memset_nbi(shared void *dst, int c, size_t n);

Description

2 The transfer initiated by upc_memset_nbi(dst, c, n) shall have the same
effects as upc_memset(dst, c, n). The transfer interval extends until the
return of the next successful upc_synci[_attempt] call performed by the
initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

58 The upc_memset_nbi function §7.9.5.4

UPC Optional Library Specifications Version 1.3

7.9.6 Explicit-handle synchronization functions

7.9.6.1 The upc_sync_attempt function

Synopsis

1 #include <upc_nb.h>
int upc_sync_attempt(upc_handle_t handle);

Description

2 handle shall be a valid handle value returned by an explicit-handle transfer
initiation function to the current thread, or the value UPC_COMPLETE_HANDLE.

3 The upc_sync_attempt function always returns immediately, without block-
ing. It returns non-zero if the transfer associated with handle is complete,
thereby ending the transfer interval. Otherwise, it returns 0.

4 If handle == UPC_COMPLETE_HANDLE then the upc_sync_attempt function
returns non-zero. Otherwise, if the function returns non-zero then the handle
value is consumed and shall not be subsequently used for any purpose.

7.9.6.2 The upc_sync function

Synopsis

1 #include <upc_nb.h>
void upc_sync(upc_handle_t handle);

Description

2 handle shall be a valid handle value returned by an explicit-handle transfer
initiation function to the current thread, or the value UPC_COMPLETE_HANDLE.

3 The upc_sync function does not return until the transfer associated with the
handle is complete, ending the transfer interval.

4 If handle == UPC_COMPLETE_HANDLE then the upc_sync function returns im-
mediately. Otherwise, the handle value is consumed by this function and shall
not be subsequently used for any purpose.

§7.9.6 Explicit-handle synchronization functions 59

UPC Optional Library Specifications Version 1.3

7.9.7 Implicit-handle synchronization functions

7.9.7.1 The upc_synci_attempt function

Synopsis

1 #include <upc_nb.h>
int upc_synci_attempt(void);

Description

2 The upc_synci_attempt function always returns immediately, without block-
ing. It returns non-zero if all implicit-handle transfers previously initiated by
the calling thread (but not yet synchronized) are complete, thereby ending
those transfer intervals. Otherwise, it returns 0.

3 If there are no such pending implicit-handle transfers, the function returns
non-zero.

4 The upc_synci_attempt function does not complete explicit-handle trans-
fers.

7.9.7.2 The upc_synci function

Synopsis

1 #include <upc_nb.h>
void upc_synci(void);

Description

2 The upc_synci function does not return until all implicit-handle transfers
previously initiated by the calling thread (but not yet synchronized) are
complete, thereby ending those transfer intervals.

3 If there are no such pending implicit-handle transfers, the function returns
immediately.

4 The upc_synci function does not complete explicit-handle transfers.

60 Implicit-handle synchronization functions §7.9.7

UPC Optional Library Specifications Version 1.3

Index

__UPC_ATOMIC__, 4
__UPC_CASTABLE__, 12
__UPC_IO__, 15
__UPC_NB__, 49

asynchronous I/O, 18, 33, 42

cast, 12
castability, 12
castable, 13
common file pointer, 17, 23, 32

end of file, 15, 29

file atomicity, 16, 19, 33
file close, 28
file consistency, 16, 19, 33
file flush, 28
file hints, 26, 33
file interoperability, 21
file open, 24
file pointer, 17, 23, 32
file reading, 33, 39, 40, 42
file seek, 29
file size, 29–31
file writing, 35, 41, 42

individual file pointer, 17, 23, 32

list I/O, 37

privatizability, 12

upc_all_atomicdomain_alloc, 7
upc_all_atomicdomain_free, 8
upc_all_fclose, 28
upc_all_fcntl, 31

upc_all_fget_size, 30
upc_all_fopen, 24
upc_all_fpreallocate, 31
upc_all_fread_list_local, 39
upc_all_fread_list_local_async, 45
upc_all_fread_list_shared, 40
upc_all_fread_list_shared_async, 46
upc_all_fread_local, 33
upc_all_fread_local_async, 43
upc_all_fread_shared, 34
upc_all_fread_shared_async, 44
upc_all_fseek, 29
upc_all_fset_size, 29
upc_all_fsync, 19, 28
upc_all_ftest_async, 19, 43, 48
upc_all_fwait_async, 19, 43, 47
upc_all_fwrite_list_local, 41
upc_all_fwrite_list_local_async, 46
upc_all_fwrite_list_shared, 42
upc_all_fwrite_list_shared_async, 47
upc_all_fwrite_local, 35
upc_all_fwrite_local_async, 44
upc_all_fwrite_shared, 36
upc_all_fwrite_shared_async, 45
UPC_APPEND, 24
UPC_ASYNC_OUTSTANDING, 33
upc_atomic.h, 4
upc_atomic_isfast, 11
upc_atomic_relaxed, 8
upc_atomic_strict, 8
upc_atomicdomain_t, 5
upc_atomichint_t, 6
upc_cast, 12
upc_castable.h, 12

Index 61

UPC Optional Library Specifications Version 1.3

UPC_CASTABLE_ALL_ALLOC, 14
UPC_CASTABLE_ALLOC, 14
UPC_CASTABLE_GLOBAL_ALLOC,

14
UPC_CASTABLE_STATIC, 14
UPC_COMMON_FP, 24
UPC_COMPLETE_HANDLE, 52
UPC_CREATE, 24
UPC_CSWAP, 5
UPC_DEC, 5
UPC_DELETE_ON_CLOSE, 24
UPC_EXCL, 24
upc_file_t, 22
upc_filevec, 38
upc_flag_t, 15
UPC_GET, 5
UPC_GET_CA_SEMANTICS, 31
UPC_GET_FL, 32
UPC_GET_FN, 32
UPC_GET_FP, 32
UPC_GET_HINTS, 33
upc_handle_t, 52
upc_hint, 26, 33
UPC_INC, 5
UPC_INDIVIDUAL_FP, 24
upc_io.h, 15
upc_local_memvec, 38
upc_memcpy_nb, 53
upc_memcpy_nbi, 56
upc_memget_nb, 54
upc_memget_nbi, 57
upc_memput_nb, 54
upc_memput_nbi, 57
upc_memset_nb, 55
upc_memset_nbi, 58
upc_nb.h, 49
upc_off_t, 22
UPC_RDONLY, 24

UPC_RDWR, 24
UPC_SEEK_CUR, 29
UPC_SEEK_END, 29
UPC_SEEK_SET, 29
UPC_SET, 5
UPC_SET_COMMON_FP, 32
UPC_SET_HINT, 33
UPC_SET_INDIVIDUAL_FP, 32
UPC_SET_STRONG_CA_SEMANTICS,

20, 32
UPC_SET_WEAK_CA_SEMANTICS,

31
upc_shared_memvec, 38
UPC_STRONG_CA, 20, 24
UPC_SUB, 5
upc_sync, 59
upc_sync_attempt, 59
upc_synci, 60
upc_synci_attempt, 60
upc_thread_info, 13
upc_thread_info_t, 13
UPC_TRUNC, 24
UPC_WRONLY, 24

62 Index

	Cover
Page
	UPC Language Specifications, Version 1.3

	Acknowledgments
	Contents
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and symbols
	3.1
	3.2
	3.3
	3.4
	3.4.1
	3.4.2
	3.4.3

	3.5
	3.6
	3.7
	3.8
	3.8.1
	3.8.1.1
	3.8.1.2
	3.8.1.3
	3.8.1.4

	3.8.2

	3.9
	3.10
	3.11

	4 Conformance
	5 Environment
	5.1 Conceptual models
	5.1.1 Translation environment
	5.1.1.1 Threads environment

	5.1.2 Execution environment
	5.1.2.1 Program startup
	5.1.2.2 Program termination
	5.1.2.3 Program execution

	6 Language
	6.1 Notations
	6.2 Keywords
	6.3 Predefined identifiers
	6.3.1 THREADS
	6.3.2 MYTHREAD
	6.3.3 UPC_MAX_BLOCK_SIZE

	6.4 Expressions
	6.4.1 Unary Operators
	6.4.1.1 The sizeof operator
	6.4.1.2 The upc_localsizeof operator
	6.4.1.3 The upc_blocksizeof operator
	6.4.1.4 The upc_elemsizeof operator

	6.4.2 Pointer-to-shared arithmetic
	6.4.3 Cast and assignment expressions
	6.4.4 Address operators

	6.5 Declarations
	6.5.1 Type qualifiers
	6.5.1.1 The shared and reference type qualifiers

	6.5.2 Declarators
	6.5.2.1 Array declarators

	6.6 Statements and blocks
	6.6.1 Barrier statements
	6.6.2 Iteration statements

	6.7 Preprocessing directives
	6.7.1 UPC pragmas
	6.7.2 Predefined macro names

	7 Library
	7.1 Standard headers
	7.2 UPC utilities <upc.h>
	7.2.1 Termination of all threads
	7.2.2 Shared memory allocation functions
	7.2.2.1 The upc_global_alloc function
	7.2.2.2 The upc_all_alloc function
	7.2.2.3 The upc_alloc function
	7.2.2.4 The upc_free function
	7.2.2.5 The upc_all_free function

	7.2.3 Pointer-to-shared manipulation functions
	7.2.3.1 The upc_threadof function
	7.2.3.2 The upc_phaseof function
	7.2.3.3 The upc_resetphase function
	7.2.3.4 The upc_addrfield function
	7.2.3.5 The upc_affinitysize function

	7.2.4 Lock functions
	7.2.4.1 Type
	7.2.4.2 The upc_global_lock_alloc function
	7.2.4.3 The upc_all_lock_alloc function
	7.2.4.4 The upc_lock_free function
	7.2.4.5 The upc_all_lock_free function
	7.2.4.6 The upc_lock function
	7.2.4.7 The upc_lock_attempt function
	7.2.4.8 The upc_unlock function

	7.2.5 Shared string handling functions
	7.2.5.1 The upc_memcpy function
	7.2.5.2 The upc_memget function
	7.2.5.3 The upc_memput function
	7.2.5.4 The upc_memset function

	7.3 UPC standard types <upc_types.h>
	7.3.1 Operation designator (upc_op_t)
	7.3.2 Type designator (upc_type_t)
	7.3.3 Synchronization flags (upc_flag_t)
	7.3.4 Memory Semantics of Library Functions

	A Additions and Extensions
	B Formal UPC Memory Consistency Semantics
	B.1 Definitions
	B.2 Memory Access Model
	B.3 Consistency Semantics of Standard Libraries and Language Operations
	B.3.1 Consistency Semantics of Synchronization Operations
	B.3.2 Consistency Semantics of Standard Library Calls
	B.3.2.1 Non-Collective Standard Library Calls
	B.3.2.2 Collective Standard Library Calls

	B.4 Properties Implied by the Specification
	B.5 Examples
	B.6 Formal Definition of Precedes

	C UPC versus C Standard Section Numbering
	References
	Index

	UPC Required Library Specifications, Version 1.3

	Contents
	7 Library
	7.4 UPC Collective Utilities <upc_collective.h>
	7.4.1 Standard headers
	7.4.2 Relocalization Operations
	7.4.2.1 The upc_all_broadcast function
	7.4.2.2 The upc_all_scatter function
	7.4.2.3 The upc_all_gather function
	7.4.2.4 The upc_all_gather_all function
	7.4.2.5 The upc_all_exchange function
	7.4.2.6 The upc_all_permute function

	7.4.3 Computational Operations
	7.4.3.1 The upc_all_reduce and upc_all_prefix_reduce functions

	7.5 High-Performance Wall-Clock Timers <upc_tick.h>
	7.5.1 Standard header
	7.5.1.1 upc_tick_t Type
	7.5.1.2 UPC_TICK_MAX and UPC_TICK_MIN

	7.5.2 upc_tick_t functions
	7.5.2.1 The upc_ticks_now function
	7.5.2.2 The upc_ticks_to_ns function

	Index

	UPC Optional
Library Specifications, Version 1.3
	Contents
	7 Library
	7.6 UPC Atomic Memory Operations <upc_atomic.h>
	7.6.1 Standard headers
	7.6.2 Common Requirements
	7.6.3 Atomic Library Types
	7.6.3.1 The upc_atomicdomain_t type
	7.6.3.2 The upc_atomichint_t type

	7.6.4 Atomic Library Functions
	7.6.4.1 The upc_all_atomicdomain_alloc function
	7.6.4.2 The upc_all_atomicdomain_free function
	7.6.4.3 The upc_atomic_strict and upc_atomic_relaxed functions
	7.6.4.4 The upc_atomic_isfast function

	7.7 Castability Functions <upc_castable.h>
	7.7.1 Standard headers
	7.7.2 Castability Functions
	7.7.2.1 The upc_cast function
	7.7.2.2 The upc_thread_info function

	7.8 UPC Parallel I/O <upc_io.h>
	7.8.1 Background
	7.8.1.1 File Accessing and File Pointers
	7.8.1.2 Synchronous and Asynchronous I/O
	7.8.1.3 Consistency and Atomicity Semantics
	7.8.1.4 File Interoperability

	7.8.2 Predefined Types
	7.8.3 UPC File Operations
	7.8.3.1 The upc_all_fopen function
	7.8.3.2 The upc_all_fclose function
	7.8.3.3 The upc_all_fsync function
	7.8.3.4 The upc_all_fseek function
	7.8.3.5 The upc_all_fset_size function
	7.8.3.6 The upc_all_fget_size function
	7.8.3.7 The upc_all_fpreallocate function
	7.8.3.8 The upc_all_fcntl function

	7.8.4 Reading Data
	7.8.4.1 The upc_all_fread_local function
	7.8.4.2 The upc_all_fread_shared function

	7.8.5 Writing Data
	7.8.5.1 The upc_all_fwrite_local function
	7.8.5.2 The upc_all_fwrite_shared function

	7.8.6 List I/O
	7.8.6.1 The upc_all_fread_list_local function
	7.8.6.2 The upc_all_fread_list_shared function
	7.8.6.3 The upc_all_fwrite_list_local function
	7.8.6.4 The upc_all_fwrite_list_shared function

	7.8.7 Asynchronous I/O
	7.8.7.1 The upc_all_fread_local_async function
	7.8.7.2 The upc_all_fread_shared_async function
	7.8.7.3 The upc_all_fwrite_local_async function
	7.8.7.4 The upc_all_fwrite_shared_async function
	7.8.7.5 The upc_all_fread_list_local_async function
	7.8.7.6 The upc_all_fread_list_shared_async function
	7.8.7.7 The upc_all_fwrite_list_local_async function
	7.8.7.8 The upc_all_fwrite_list_shared_async function
	7.8.7.9 The upc_all_fwait_async function
	7.8.7.10 The upc_all_ftest_async function

	7.9 UPC Non-Blocking Transfer Operations <upc_nb.h>
	7.9.1 Standard header
	7.9.2 Common Requirements
	7.9.3 Explicit Handle Type
	7.9.4 Explicit-handle transfer initiation functions
	7.9.4.1 The upc_memcpy_nb function
	7.9.4.2 The upc_memget_nb function
	7.9.4.3 The upc_memput_nb function
	7.9.4.4 The upc_memset_nb function

	7.9.5 Implicit-handle transfer initiation functions
	7.9.5.1 The upc_memcpy_nbi function
	7.9.5.2 The upc_memget_nbi function
	7.9.5.3 The upc_memput_nbi function
	7.9.5.4 The upc_memset_nbi function

	7.9.6 Explicit-handle synchronization functions
	7.9.6.1 The upc_sync_attempt function
	7.9.6.2 The upc_sync function

	7.9.7 Implicit-handle synchronization functions
	7.9.7.1 The upc_synci_attempt function
	7.9.7.2 The upc_synci function

	Index

		2014-05-05T22:58:32-0400
	UPC Specification Working Group

