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Context

• Most parallel programs are written using either:
• Message passing with a SPMD model

• Usually for scientific applications with C++/Fortran
• Scales easily

• Shared memory with threads in OpenMP, 
Threads+C/C++/F or Java

• Usually for non-scientific applications
• Easier to program, but less scalable performance

• Global Address Space (GAS) Languages take the best of both
• global address space like threads (programmability)
• SPMD parallelism like MPI (performance)
• local/global distinction, i.e., layout matters (performance)
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Partitioned Global Address Space Languages
• Explicitly-parallel programming model with SPMD parallelism

• Fixed at program start-up, typically 1 thread per processor
• Global address space model of memory

• Allows programmer to directly represent distributed data 
structures

• Address space is logically partitioned
• Local vs. remote memory (two-level hierarchy)

• Programmer control over performance critical decisions
• Data layout and communication 

• Performance transparency and tunability are goals
• Initial implementation can use fine-grained shared memory

• Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium 
(Java)
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Global Address Space Eases Programming

• The languages share the global address space abstraction
• Shared memory is logically partitioned by processors
• Remote memory may stay remote: no automatic caching implied
• One-sided communication: reads/writes of shared variables
• Both individual and bulk memory copies 

• Languages differ on details
• Some models have a separate private memory area
• Distributed array generality and how they are constructed

Shared

G
lo

ba
l 

ad
dr

es
s 

sp
ac

e

X[0]

Private
ptr: ptr: ptr: 

X[1] X[P]

Thread0 Thread1 Threadn

5/30/2006 CS267 Lecture: UPC 6

Current Implementations of PGAS Languages

• A successful language/library must run everywhere
• UPC

• Commercial compilers available on Cray, SGI, HP machines
• Open source compiler from LBNL/UCB (source-to-source)
• Open source gcc-based compiler from Intrepid

• CAF
• Commercial compiler available on Cray machines
• Open source compiler available from Rice

• Titanium 
• Open source compiler from UCB runs on most machines

• Common tools
• Open64 open source research compiler infrastructure
• ARMCI, GASNet for distributed memory implementations
• Pthreads, System V shared memory
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UPC Overview and Design Philosophy

• Unified Parallel C (UPC) is:
• An explicit parallel extension of ANSI C 
• A partitioned global address space language
• Sometimes called a GAS language

• Similar to the C language philosophy
• Programmers are clever and careful, and may 

need to get close to hardware
• to get performance, but
• can get in trouble

• Concise and efficient syntax
• Common and familiar syntax and semantics for 

parallel C with simple extensions to ANSI C
• Based on ideas in Split-C, AC, and PCP
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UPC Execution 
Model
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UPC Execution Model

• A number of threads working independently in a SPMD 
fashion
• Number of threads specified at compile-time or run-time; 

available as program variable THREADS
• MYTHREAD specifies thread index (0..THREADS-1)
• upc_barrier is a global synchronization: all wait
• There is a form of parallel loop that we will see later

• There are two compilation modes
• Static Threads mode:

• THREADS is specified at compile time by the user
• The program may use THREADS as a compile-time constant

• Dynamic threads mode:
• Compiled code may be run with varying numbers of threads
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Hello World in UPC
• Any legal C program is also a legal UPC program
• If you compile and run it as UPC with P threads, it will 

run P copies of the program.
• Using this fact, plus the identifiers from the previous 

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
printf("Thread %d of %d: hello UPC world\n", 

MYTHREAD, THREADS);
}
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Example: Monte Carlo Pi Calculation
• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

• Area of square = r2 = 1
• Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
• If x2 + y2 < 1, then point is inside circle
• Compute ratio:

• # points inside / # points total
• π = 4*ratio 

r =1
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Each thread calls “hit” separately

Initialize random in 
math library

Each thread can use 
input arguments

Each thread gets its own 
copy of these variables

Pi in UPC 

• Independent estimates of pi:
main(int argc, char **argv) {
int i, hits, trials = 0;
double pi;

if (argc != 2)trials = 1000000;
else trials = atoi(argv[1]);

srand(MYTHREAD*17);

for (i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf("PI estimated to %f.", pi);

}
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Helper Code for Pi in UPC
• Required includes:

#include <stdio.h>
#include <math.h> 
#include <upc.h> 

• Function to throw dart and calculate where it hits:
int hit(){
int const rand_max = 0xFFFFFF;
double x = ((double) rand()) / RAND_MAX;
double y = ((double) rand()) / RAND_MAX;
if ((x*x + y*y) <= 1.0) {

return(1);
} else {

return(0);
}

}
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Shared vs. Private 
Variables
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Private vs. Shared Variables in UPC
• Normal C variables and objects are allocated in the 

private memory space for each thread.
• Shared variables are allocated only once, with thread 0

shared int ours;  // use sparingly: performance
int mine;

• Shared variables may not have dynamic lifetime:  may not 
occur in a in a function definition, except as static.  Why?
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Pi in UPC: Shared Memory Style
• Parallel computing of pi, but with a bug

shared int hits;
main(int argc, char **argv) {

int i, my_trials = 0;
int trials = atoi(argv[1]);
my_trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17);
for (i=0; i < my_trials; i++)   
hits += hit();

upc_barrier;
if (MYTHREAD == 0) {
printf("PI estimated to %f.", 4.0*hits/trials);

}
}

shared variable to 
record hits

divide work up evenly

accumulate hits

What is the problem with this program?
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Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

• In the pictures below, assume THREADS = 4
• Red elts have affinity to thread 0

x

y

z

As a 2D array, y is 
logically blocked 
by columns

Think of linearized
C array, then map 
in round-robin

z is not
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Pi in UPC: Shared Array Version
• Alternative fix to the race condition 
• Have each thread update a separate counter:

• But do it in a shared array
• Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {

… declarations an initialization code omitted
for (i=0; i < my_trials; i++) 
all_hits[MYTHREAD] += hit();

upc_barrier;
if (MYTHREAD == 0) {
for (i=0; i < THREADS; i++) hits += all_hits[i];
printf("PI estimated to %f.", 4.0*hits/trials);

}
}

all_hits is 
shared by all 
processors, 
just as hits was

update element 
with local affinity
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UPC 
Synchronization
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UPC Global Synchronization

• UPC has two basic forms of barriers:
• Barrier: block until all other threads arrive 

upc_barrier

• Split-phase barriers
upc_notify; this thread is ready for barrier
do computation unrelated to barrier
upc_wait; wait for others to be ready

• Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {

...
upc_barrier MERGE_BARRIER;  

} else {
...
upc_barrier MERGE_BARRIER;

}
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Synchronization - Locks

• Locks in UPC are represented by an opaque type:
upc_lock_t

• Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

allocates 1 lock, pointer to one thread
• To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

use at start and end of critical region
• Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);
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Pi in UPC: Shared Memory Style
• Parallel computing of pi, without the bug

shared int hits;
main(int argc, char **argv) {

int i, my_hits, my_trials = 0;
upc_lock_t *hit_lock = upc_all_lock_alloc();
int trials = atoi(argv[1]);
my_trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17);
for (i=0; i < my_trials; i++) 

my_hits += hit();
upc_lock(hit_lock);
hits += my_hits;
upc_unlock(hit_lock);
upc_barrier;
if (MYTHREAD == 0) 
printf("PI: %f", 4.0*hits/trials);

}

create a lock

accumulate hits 
locally

accumulate 
across threads
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UPC Collectives
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UPC Collectives in General
• The UPC collectives interface is available from:

• http://www.gwu.edu/~upc/docs/
• It contains typical functions:

• Data movement: broadcast, scatter, gather, …
• Computational: reduce, prefix, …

• Interface has synchronization modes:
• Avoid over-synchronizing (barrier before/after is 

simplest semantics, but may be unnecessary)
• Data being collected may be read/written by any 

thread simultaneously
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Pi in UPC: Data Parallel Style
• The previous version of Pi works, but is not scalable:

• On a large # of threads, the locked region will be a bottleneck
• Use a reduction for better scalability

#include <bupc_collectivev.h>
// shared int hits;
main(int argc, char **argv) {

...
for (i=0; i < my_trials; i++) 

my_hits += hit();
my_hits =         // type, input, thread, op

bupc_allv_reduce(int, my_hits, 0, UPC_ADD); 
// upc_barrier;
if (MYTHREAD == 0) 
printf("PI: %f", 4.0*my_hits/trials);

}

Berkeley collectives
no shared variables

barrier implied by collective
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Recap: Private vs. Shared Variables in UPC
• We saw several kinds of variables in the pi example

• Private scalars (my_hits)
• Shared scalars (hits)
• Shared arrays (all_hits)
• Shared locks (hit_lock)

Shared
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where:
n=Threads-1
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Work Distribution 
Using upc_forall
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Example: Vector Addition

/* vadd.c */
#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

int i;
for(i=0; i<N; i++)

if (MYTHREAD == i%THREADS)
sum[i]=v1[i]+v2[i];

}

• Questions about parallel vector additions: 
• How to layout data (here it is cyclic)
• Which processor does what (here it is “owner computes”)

cyclic layout

owner computes
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• The idiom in the previous slide is very common
• Loop over all; work on those owned by this proc

• UPC adds a special type of loop
upc_forall(init; test; loop; affinity)

statement;

• Programmer indicates the iterations are independent
• Undefined if there are dependencies across threads

• Affinity expression indicates which iterations to run on each thread.  
It may have one of two types:
• Integer: affinity%THREADS is MYTHREAD
• Pointer: upc_threadof(affinity) is MYTHREAD

• Syntactic sugar for loop on previous slide
• Some compilers may do better than this, e.g., 

for(i=MYTHREAD; i<N; i+=THREADS)

• Rather than having all threads iterate N times:
for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

Work Sharing with upc_forall()
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Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
int i;
upc_forall(i=0; i<N; i++; i)

sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows
• Equivalent code could use “&sum[i]” for affinity
• The code would be correct but slow if the affinity 

expression were i+1 rather than i.

The cyclic data 
distribution may 
perform poorly on 
some machines
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Distributed Arrays 
in UPC
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Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {
int i;
upc_forall(i=0; i<N; i++; &a[i])

sum[i]=v1[i]+v2[i];
}

• The cyclic layout is typically stored in one of two ways
• Distributed memory: each processor has a chunk of memory

• Thread 0 would have: 0,THREADS, THREADS*2,… in a chunk
• Shared memory machine: each thread has a logical chunk

• Shared memory would have: 0,1,2,…THREADS,THREADS+1,…

• What performance problem is there with the latter?
• What is this code was instead doing nearest neighbor averaging?

• Vector addition example can be rewritten as follows

blocked layout
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Layouts in General
• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

• Empty (cyclic layout)
• [*] (blocked layout)
• [0] or [] (indefinite layout, all on 1 thread)
• [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
• block size, a compile-time constant
• and THREADS.  

• Element i has affinity with thread 
(i / block_size) % THREADS

• In 2D and higher, linearize the elements as in a C 
representation, and then use above mapping
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2D Array Layouts in UPC
• Array a1 has a row layout and array a2 has a block row 

layout.
shared [m] int a1 [n][m]; 
shared [k*m] int a2 [n][m];

• If (k + m) % THREADS = = 0 them a3 has a row layout
shared int a3 [n][m+k];

• To get more general HPF and ScaLAPACK style 2D 
blocked layouts, one needs to add dimensions.  

• Assume r*c = THREADS;
shared [b1][b2] int a5 [m][n][r][c][b1][b2];

• or equivalently
shared [b1*b2] int a5 [m][n][r][c][b1][b2];
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UPC Matrix Vector Multiplication Code

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void) {
int i, j , l; 
upc_forall( i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for ( l= 0 ; l< THREADS ; l++)

c[i] += a[i][l]*b[l];
}

}

• Matrix-vector multiplication with matrix stored by rows
• (Contrived example: problems size is PxP)
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UPC Matrix Multiplication Code

/* mat_mult_1.c */
#include <upc_relaxed.h>

#define N  4
#define P  4
#define M 4

shared [N*P /THREADS] int a[N][P], c[N][M];
// a and c are row-wise blocked shared matrices

shared[M/THREADS] int b[P][M]; //column-wise blocking

void main (void) {
int i, j , l; // private variables

upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
for (j=0 ; j<M ;j++) {

c[i][j] = 0;
for (l= 0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];

}
}

}
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Notes on the Matrix Multiplication Example

• The UPC code for the matrix multiplication is almost 
the same size as the sequential code

• Shared variable declarations include the keyword 
shared

• Making a private copy of matrix B in each thread 
might result in better performance since many remote 
memory operations can be avoided

• Can be done with the help of upc_memget
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Domain Decomposition for UPC

• A (N × P) is decomposed row-wise 
into blocks of size (N × P) / THREADS 
as shown below:

• B(P × M) is decomposed column wise 
into M/ THREADS blocks as shown 
below:

Thread 0
Thread 1

Thread THREADS-1

0 .. (N*P / THREADS) -1

(N*P / THREADS)..(2*N*P / THREADS)-1 

((THREADS-1)×N*P) / THREADS .. 
(THREADS*N*P / THREADS)-1 

Columns 0: 
(M/THREADS)-1 Columns ((THREAD-1) ×

M)/THREADS:(M-1)

Thread 0
Thread THREADS-1

•Note: N and M are assumed to be multiples 
of THREADS

• Exploits locality in matrix multiplication

N

P M

P
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Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++ ) 

if (i %THREADS= = MYTHREAD)
sum[i]= *p1 + *p2;

}

• In the C tradition, array can be access through pointers
• Here is the vector addition example using pointers

v1

p1
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UPC Pointers 

SS (p4)SP (p2)Shared

PS (p3)PP (p1)Private
SharedLocal

Where does the pointer point?

Where 
does the 
pointer 
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to 

shared space */
Shared to private is not recommended.
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UPC Pointers 

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to  

shared space */

Shared
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Pointers to shared often require more storage and are more costly to 
dereference; they may refer to local or remote memory.
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Common Uses for UPC Pointer Types 

int *p1;
• These pointers are fast (just like C pointers)
• Use to access local data in part of code performing local work
• Often cast a pointer-to-shared to one of these to get faster 

access to shared data that is local
shared int *p2;
• Use to refer to remote data
• Larger and slower due to test-for-local + possible 

communication 
int *shared p3;
• Not recommended
shared int *shared p4;
• Use to build shared linked structures, e.g., a linked list
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UPC Pointers 

• In UPC pointers to shared objects have three fields: 
• thread number 
• local address of block
• phase (specifies position in the block)

• Example: Cray T3E implementation

Virtual AddressThreadPhase

03738484963

PhaseThreadVirtual Address
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UPC Pointers

• Pointer arithmetic supports blocked and non-blocked 
array distributions

• Casting of shared to private pointers is allowed but 
not vice versa !

• When casting a pointer-to-shared to a pointer-to-local, 
the thread number of the pointer to shared may be 
lost

• Casting of shared to local is well defined only if the 
object pointed to by the pointer to shared has affinity 
with the thread performing the cast
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Special Functions

• size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer 
to shared

• size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of the 
pointer to shared

• shared void *upc_resetphase(shared void *ptr); resets 
the phase to zero
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Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is 
available in UPC

• Functions can be collective or not
• A collective function has to be called by every thread 

and will return the same value to all of them
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Global Memory Allocation

shared void *upc_global_alloc(size_t nblocks, 
size_t nbytes);

nblocks : number of blocks
nbytes : block size

• Non-collective: called by one thread 
• The calling thread allocates a contiguous memory 

space in the shared space
• If called by more than one thread, multiple regions are 

allocated and each thread which makes the call gets 
a different pointer

• Space allocated per calling thread is equivalent to :
shared [nbytes] char[nblocks * nbytes]
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Collective Global Memory Allocation 

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks: number of blocks
nbytes: block size

• This function has the same result as upc_global_alloc. But this 
is a collective function, which is expected to be called by all 
threads

• All the threads will get the same pointer 
• Equivalent to : 

shared [nbytes] char[nblocks * nbytes]
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Memory Freeing

void upc_free(shared void *ptr);

• The upc_free function frees the dynamically allocated 
shared memory pointed to by ptr

• upc_free is not collective
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Distributed Arrays Directory Style
• Some high performance UPC programmers avoid the 

UPC style arrays
• Instead, build directories of distributed objects
• Also more general

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));
upc_barrier;
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Memory Consistency in UPC
• The consistency model defines the order in which one thread may 

see another threads accesses to memory
• If you write a program with unsychronized accesses, what 

happens?
• Does this work?

data = …            while (!flag) { };
flag = 1;           … = data;   // use the data

• UPC has two types of accesses: 
• Strict: will always appear in order
• Relaxed: May appear out of order to other threads

• There are several ways of designating the type, commonly:
• Use the include file:

#include <upc_relaxed.h>

• Which makes all accesses in the file relaxed by default 
• Use strict on variables that are used as synchronization (flag)
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Synchronization- Fence

• Upc provides a fence construct
• Equivalent to a null strict reference, and has the 

syntax
• upc_fence;

• UPC ensures that all shared references issued 
before the upc_fence are complete

5/30/2006 CS267 Lecture: UPC 53

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

• Scaling the number of processors
• Maximize single node performance

• Generate friendly code or use tuned libraries 
(BLAS, FFTW, etc.)

• Avoid (unnecessary) communication cost
• Latency, bandwidth, overhead
• Berkeley UPC and Titanium use GASNet 

communication layer
• Avoid unnecessary delays due to dependencies

• Load balance; Pipeline algorithmic dependencies
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One-Sided vs Two-Sided

• A one-sided put/get message can be handled directly by a network 
interface with RDMA support

• Avoid interrupting the CPU or storing data from CPU (preposts)
• A two-sided messages needs to be matched with a receive to 

identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)
• Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU
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Performance Advantage of One-Sided Communication
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• Opteron/InfiniBand (Jacquard at NERSC):
• GASNet’s vapi-conduit and OSU MPI 0.9.5 MVAPICH
• This is a very good MPI implementation – it’s limited by 

semantics of message matching, ordering, etc.
• Half power point (N ½ ) differs by one order of magnitude

Joint work with Paul Hargrove and Dan Bonachea
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GASNet: Portability and High-Performance
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GASNet better for latency across machines

8-byte Roundtrip Latency
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Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages
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GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages
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Joint work with UPC Group; GASNet design by Dan Bonachea
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Case Study 2: NAS FT
• Performance of Exchange (Alltoall) is critical

• 1D FFTs in each dimension, 3 phases
• Transpose after first 2 for locality
• Bisection bandwidth-limited

• Problem as #procs grows

• Three approaches:
• Exchange:

• wait for 2nd dim FFTs to finish, send 1 
message per processor pair

• Slab:
• wait for chunk of rows destined for 1 

proc, send when ready
• Pencil:

• send each row as it completes

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea
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Overlapping Communication
• Goal: make use of “all the wires all the time”

• Schedule communication to avoid network backup
• Trade-off: overhead vs. overlap

• Exchange has fewest messages, less message overhead
• Slabs and pencils have more overlap; pencils the most

• Example: Class D problem on 256 Processors

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

16 KbytesPencils (single row)
64 KbytesSlabs (contiguous rows that go to 1 processor)

512 KbytesExchange (all data at once)
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap
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Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

.5 Tflops
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Case Study 2: LU Factorization

• Direct methods have complicated dependencies
• Especially with pivoting (unpredictable communication)
• Especially for sparse matrices (dependence graph with holes)

• LU Factorization in UPC
• Use overlap ideas and multithreading to mask latency
• Multithreaded: UPC threads + user threads + threaded BLAS

• Panel factorization: Including pivoting
• Update to a block of U
• Trailing submatrix updates

• Status:
• Dense LU done: HPL-compliant 
• Sparse version underway

Joint work with Parry Husbands
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UPC HPL Performance

• Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
• ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes)
• UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

• n = 32000 on a 4x4 process grid
• ScaLAPACK - 43.34 GFlop/s (block size = 64) 
• UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance
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•MPI HPL numbers 
from HPCC 
database

•Large scaling: 
• 2.2 TFlops on 512p, 
• 4.4 TFlops on 1024p 
(Thunder)

Joint work with Parry Husbands
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Summary
• UPC designed to be consistent with C

• Some low level details, such as memory layout are 
exposed

• Ability to use pointers and arrays interchangeably
• Designed for high performance

• Memory consistency explicit
• Small implementation

• Berkeley compiler (used for next homework)
http://upc.lbl.gov

• Language specification and other documents
http://upc.gwu.edu


