
CS267 Lecture 2 1

5/30/2006 CS267 Lecture: UPC 1

CS 267
Unified Parallel C (UPC)

Kathy Yelick

http://upc.lbl.gov

Slides adapted from some by Tarek El-Ghazawi (GWU)

5/30/2006 CS267 Lecture: UPC 2

UPC Outline

1. Background
2. UPC Execution Model
3. Basic Memory Model: Shared vs. Private Scalars
4. Synchronization
5. Collectives
6. Data and Pointers
7. Dynamic Memory Management
8. Programming Examples
8. Performance Tuning and Early Results
9. Concluding Remarks

5/30/2006 CS267 Lecture: UPC 3

Context

• Most parallel programs are written using either:
• Message passing with a SPMD model

• Usually for scientific applications with C++/Fortran
• Scales easily

• Shared memory with threads in OpenMP,
Threads+C/C++/F or Java

• Usually for non-scientific applications
• Easier to program, but less scalable performance

• Global Address Space (GAS) Languages take the best of both
• global address space like threads (programmability)
• SPMD parallelism like MPI (performance)
• local/global distinction, i.e., layout matters (performance)

5/30/2006 CS267 Lecture: UPC 4

Partitioned Global Address Space Languages
• Explicitly-parallel programming model with SPMD parallelism

• Fixed at program start-up, typically 1 thread per processor
• Global address space model of memory

• Allows programmer to directly represent distributed data
structures

• Address space is logically partitioned
• Local vs. remote memory (two-level hierarchy)

• Programmer control over performance critical decisions
• Data layout and communication

• Performance transparency and tunability are goals
• Initial implementation can use fine-grained shared memory

• Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium
(Java)

5/30/2006 CS267 Lecture: UPC 5

Global Address Space Eases Programming

• The languages share the global address space abstraction
• Shared memory is logically partitioned by processors
• Remote memory may stay remote: no automatic caching implied
• One-sided communication: reads/writes of shared variables
• Both individual and bulk memory copies

• Languages differ on details
• Some models have a separate private memory area
• Distributed array generality and how they are constructed

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

X[0]

Private
ptr: ptr: ptr:

X[1] X[P]

Thread0 Thread1 Threadn

5/30/2006 CS267 Lecture: UPC 6

Current Implementations of PGAS Languages

• A successful language/library must run everywhere
• UPC

• Commercial compilers available on Cray, SGI, HP machines
• Open source compiler from LBNL/UCB (source-to-source)
• Open source gcc-based compiler from Intrepid

• CAF
• Commercial compiler available on Cray machines
• Open source compiler available from Rice

• Titanium
• Open source compiler from UCB runs on most machines

• Common tools
• Open64 open source research compiler infrastructure
• ARMCI, GASNet for distributed memory implementations
• Pthreads, System V shared memory

CS267 Lecture 2 2

5/30/2006 CS267 Lecture: UPC 7

UPC Overview and Design Philosophy

• Unified Parallel C (UPC) is:
• An explicit parallel extension of ANSI C
• A partitioned global address space language
• Sometimes called a GAS language

• Similar to the C language philosophy
• Programmers are clever and careful, and may

need to get close to hardware
• to get performance, but
• can get in trouble

• Concise and efficient syntax
• Common and familiar syntax and semantics for

parallel C with simple extensions to ANSI C
• Based on ideas in Split-C, AC, and PCP

5/30/2006 CS267 Lecture: UPC 8

UPC Execution
Model

5/30/2006 CS267 Lecture: UPC 9

UPC Execution Model

• A number of threads working independently in a SPMD
fashion
• Number of threads specified at compile-time or run-time;

available as program variable THREADS
• MYTHREAD specifies thread index (0..THREADS-1)
• upc_barrier is a global synchronization: all wait
• There is a form of parallel loop that we will see later

• There are two compilation modes
• Static Threads mode:

• THREADS is specified at compile time by the user
• The program may use THREADS as a compile-time constant

• Dynamic threads mode:
• Compiled code may be run with varying numbers of threads

5/30/2006 CS267 Lecture: UPC 10

Hello World in UPC
• Any legal C program is also a legal UPC program
• If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the identifiers from the previous

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
printf("Thread %d of %d: hello UPC world\n",

MYTHREAD, THREADS);
}

5/30/2006 CS267 Lecture: UPC 11

Example: Monte Carlo Pi Calculation
• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

• Area of square = r2 = 1
• Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
• If x2 + y2 < 1, then point is inside circle
• Compute ratio:

• # points inside / # points total
• π = 4*ratio

r =1

5/30/2006 CS267 Lecture: UPC 12

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
main(int argc, char **argv) {
int i, hits, trials = 0;
double pi;

if (argc != 2)trials = 1000000;
else trials = atoi(argv[1]);

srand(MYTHREAD*17);

for (i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf("PI estimated to %f.", pi);

}

CS267 Lecture 2 3

5/30/2006 CS267 Lecture: UPC 13

Helper Code for Pi in UPC
• Required includes:

#include <stdio.h>
#include <math.h>
#include <upc.h>

• Function to throw dart and calculate where it hits:
int hit(){
int const rand_max = 0xFFFFFF;
double x = ((double) rand()) / RAND_MAX;
double y = ((double) rand()) / RAND_MAX;
if ((x*x + y*y) <= 1.0) {

return(1);
} else {

return(0);
}

}
5/30/2006 CS267 Lecture: UPC 14

Shared vs. Private
Variables

5/30/2006 CS267 Lecture: UPC 15

Private vs. Shared Variables in UPC
• Normal C variables and objects are allocated in the

private memory space for each thread.
• Shared variables are allocated only once, with thread 0

shared int ours; // use sparingly: performance
int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

5/30/2006 CS267 Lecture: UPC 16

Pi in UPC: Shared Memory Style
• Parallel computing of pi, but with a bug

shared int hits;
main(int argc, char **argv) {

int i, my_trials = 0;
int trials = atoi(argv[1]);
my_trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17);
for (i=0; i < my_trials; i++)
hits += hit();

upc_barrier;
if (MYTHREAD == 0) {
printf("PI estimated to %f.", 4.0*hits/trials);

}
}

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

5/30/2006 CS267 Lecture: UPC 17

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

• In the pictures below, assume THREADS = 4
• Red elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not
5/30/2006 CS267 Lecture: UPC 18

Pi in UPC: Shared Array Version
• Alternative fix to the race condition
• Have each thread update a separate counter:

• But do it in a shared array
• Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {

… declarations an initialization code omitted
for (i=0; i < my_trials; i++)
all_hits[MYTHREAD] += hit();

upc_barrier;
if (MYTHREAD == 0) {
for (i=0; i < THREADS; i++) hits += all_hits[i];
printf("PI estimated to %f.", 4.0*hits/trials);

}
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

CS267 Lecture 2 4

5/30/2006 CS267 Lecture: UPC 19

UPC
Synchronization

5/30/2006 CS267 Lecture: UPC 20

UPC Global Synchronization

• UPC has two basic forms of barriers:
• Barrier: block until all other threads arrive

upc_barrier

• Split-phase barriers
upc_notify; this thread is ready for barrier
do computation unrelated to barrier
upc_wait; wait for others to be ready

• Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {

...
upc_barrier MERGE_BARRIER;

} else {
...
upc_barrier MERGE_BARRIER;

}

5/30/2006 CS267 Lecture: UPC 21

Synchronization - Locks

• Locks in UPC are represented by an opaque type:
upc_lock_t

• Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

allocates 1 lock, pointer to one thread
• To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

use at start and end of critical region
• Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

5/30/2006 CS267 Lecture: UPC 22

Pi in UPC: Shared Memory Style
• Parallel computing of pi, without the bug

shared int hits;
main(int argc, char **argv) {

int i, my_hits, my_trials = 0;
upc_lock_t *hit_lock = upc_all_lock_alloc();
int trials = atoi(argv[1]);
my_trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17);
for (i=0; i < my_trials; i++)

my_hits += hit();
upc_lock(hit_lock);
hits += my_hits;
upc_unlock(hit_lock);
upc_barrier;
if (MYTHREAD == 0)
printf("PI: %f", 4.0*hits/trials);

}

create a lock

accumulate hits
locally

accumulate
across threads

5/30/2006 CS267 Lecture: UPC 23

UPC Collectives

5/30/2006 CS267 Lecture: UPC 24

UPC Collectives in General
• The UPC collectives interface is available from:

• http://www.gwu.edu/~upc/docs/
• It contains typical functions:

• Data movement: broadcast, scatter, gather, …
• Computational: reduce, prefix, …

• Interface has synchronization modes:
• Avoid over-synchronizing (barrier before/after is

simplest semantics, but may be unnecessary)
• Data being collected may be read/written by any

thread simultaneously

CS267 Lecture 2 5

5/30/2006 CS267 Lecture: UPC 25

Pi in UPC: Data Parallel Style
• The previous version of Pi works, but is not scalable:

• On a large # of threads, the locked region will be a bottleneck
• Use a reduction for better scalability

#include <bupc_collectivev.h>
// shared int hits;
main(int argc, char **argv) {

...
for (i=0; i < my_trials; i++)

my_hits += hit();
my_hits = // type, input, thread, op

bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
// upc_barrier;
if (MYTHREAD == 0)
printf("PI: %f", 4.0*my_hits/trials);

}

Berkeley collectives
no shared variables

barrier implied by collective

5/30/2006 CS267 Lecture: UPC 26

Recap: Private vs. Shared Variables in UPC
• We saw several kinds of variables in the pi example

• Private scalars (my_hits)
• Shared scalars (hits)
• Shared arrays (all_hits)
• Shared locks (hit_lock)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]:all_hits[1]:

hit_lock:

where:
n=Threads-1

5/30/2006 CS267 Lecture: UPC 27

Work Distribution
Using upc_forall

5/30/2006 CS267 Lecture: UPC 28

Example: Vector Addition

/* vadd.c */
#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

int i;
for(i=0; i<N; i++)

if (MYTHREAD == i%THREADS)
sum[i]=v1[i]+v2[i];

}

• Questions about parallel vector additions:
• How to layout data (here it is cyclic)
• Which processor does what (here it is “owner computes”)

cyclic layout

owner computes

5/30/2006 CS267 Lecture: UPC 29

• The idiom in the previous slide is very common
• Loop over all; work on those owned by this proc

• UPC adds a special type of loop
upc_forall(init; test; loop; affinity)

statement;

• Programmer indicates the iterations are independent
• Undefined if there are dependencies across threads

• Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
• Integer: affinity%THREADS is MYTHREAD
• Pointer: upc_threadof(affinity) is MYTHREAD

• Syntactic sugar for loop on previous slide
• Some compilers may do better than this, e.g.,

for(i=MYTHREAD; i<N; i+=THREADS)

• Rather than having all threads iterate N times:
for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

Work Sharing with upc_forall()

5/30/2006 CS267 Lecture: UPC 30

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
int i;
upc_forall(i=0; i<N; i++; i)

sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows
• Equivalent code could use “&sum[i]” for affinity
• The code would be correct but slow if the affinity

expression were i+1 rather than i.

The cyclic data
distribution may
perform poorly on
some machines

CS267 Lecture 2 6

5/30/2006 CS267 Lecture: UPC 31

Distributed Arrays
in UPC

5/30/2006 CS267 Lecture: UPC 32

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {
int i;
upc_forall(i=0; i<N; i++; &a[i])

sum[i]=v1[i]+v2[i];
}

• The cyclic layout is typically stored in one of two ways
• Distributed memory: each processor has a chunk of memory

• Thread 0 would have: 0,THREADS, THREADS*2,… in a chunk
• Shared memory machine: each thread has a logical chunk

• Shared memory would have: 0,1,2,…THREADS,THREADS+1,…

• What performance problem is there with the latter?
• What is this code was instead doing nearest neighbor averaging?

• Vector addition example can be rewritten as follows

blocked layout

5/30/2006 CS267 Lecture: UPC 33

Layouts in General
• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

• Empty (cyclic layout)
• [*] (blocked layout)
• [0] or [] (indefinite layout, all on 1 thread)
• [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
• block size, a compile-time constant
• and THREADS.

• Element i has affinity with thread
(i / block_size) % THREADS

• In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

5/30/2006 CS267 Lecture: UPC 34

2D Array Layouts in UPC
• Array a1 has a row layout and array a2 has a block row

layout.
shared [m] int a1 [n][m];
shared [k*m] int a2 [n][m];

• If (k + m) % THREADS = = 0 them a3 has a row layout
shared int a3 [n][m+k];

• To get more general HPF and ScaLAPACK style 2D
blocked layouts, one needs to add dimensions.

• Assume r*c = THREADS;
shared [b1][b2] int a5 [m][n][r][c][b1][b2];

• or equivalently
shared [b1*b2] int a5 [m][n][r][c][b1][b2];

5/30/2006 CS267 Lecture: UPC 35

UPC Matrix Vector Multiplication Code

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void) {
int i, j , l;
upc_forall(i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for (l= 0 ; l< THREADS ; l++)

c[i] += a[i][l]*b[l];
}

}

• Matrix-vector multiplication with matrix stored by rows
• (Contrived example: problems size is PxP)

5/30/2006 CS267 Lecture: UPC 36

UPC Matrix Multiplication Code

/* mat_mult_1.c */
#include <upc_relaxed.h>

#define N 4
#define P 4
#define M 4

shared [N*P /THREADS] int a[N][P], c[N][M];
// a and c are row-wise blocked shared matrices

shared[M/THREADS] int b[P][M]; //column-wise blocking

void main (void) {
int i, j , l; // private variables

upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
for (j=0 ; j<M ;j++) {

c[i][j] = 0;
for (l= 0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];

}
}

}

CS267 Lecture 2 7

5/30/2006 CS267 Lecture: UPC 37

Notes on the Matrix Multiplication Example

• The UPC code for the matrix multiplication is almost
the same size as the sequential code

• Shared variable declarations include the keyword
shared

• Making a private copy of matrix B in each thread
might result in better performance since many remote
memory operations can be avoided

• Can be done with the help of upc_memget

5/30/2006 CS267 Lecture: UPC 38

Domain Decomposition for UPC

• A (N × P) is decomposed row-wise
into blocks of size (N × P) / THREADS
as shown below:

• B(P × M) is decomposed column wise
into M/ THREADS blocks as shown
below:

Thread 0
Thread 1

Thread THREADS-1

0 .. (N*P / THREADS) -1

(N*P / THREADS)..(2*N*P / THREADS)-1

((THREADS-1)×N*P) / THREADS ..
(THREADS*N*P / THREADS)-1

Columns 0:
(M/THREADS)-1 Columns ((THREAD-1) ×

M)/THREADS:(M-1)

Thread 0
Thread THREADS-1

•Note: N and M are assumed to be multiples
of THREADS

• Exploits locality in matrix multiplication

N

P M

P

5/30/2006 CS267 Lecture: UPC 39

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

if (i %THREADS= = MYTHREAD)
sum[i]= *p1 + *p2;

}

• In the C tradition, array can be access through pointers
• Here is the vector addition example using pointers

v1

p1

5/30/2006 CS267 Lecture: UPC 40

UPC Pointers

SS (p4)SP (p2)Shared

PS (p3)PP (p1)Private
SharedLocal

Where does the pointer point?

Where
does the
pointer
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */
Shared to private is not recommended.

5/30/2006 CS267 Lecture: UPC 41

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

5/30/2006 CS267 Lecture: UPC 42

Common Uses for UPC Pointer Types

int *p1;
• These pointers are fast (just like C pointers)
• Use to access local data in part of code performing local work
• Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
• Use to refer to remote data
• Larger and slower due to test-for-local + possible

communication
int *shared p3;
• Not recommended
shared int *shared p4;
• Use to build shared linked structures, e.g., a linked list

CS267 Lecture 2 8

5/30/2006 CS267 Lecture: UPC 43

UPC Pointers

• In UPC pointers to shared objects have three fields:
• thread number
• local address of block
• phase (specifies position in the block)

• Example: Cray T3E implementation

Virtual AddressThreadPhase

03738484963

PhaseThreadVirtual Address

5/30/2006 CS267 Lecture: UPC 44

UPC Pointers

• Pointer arithmetic supports blocked and non-blocked
array distributions

• Casting of shared to private pointers is allowed but
not vice versa !

• When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

• Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast

5/30/2006 CS267 Lecture: UPC 45

Special Functions

• size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

• size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

• shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

5/30/2006 CS267 Lecture: UPC 46

Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is
available in UPC

• Functions can be collective or not
• A collective function has to be called by every thread

and will return the same value to all of them

5/30/2006 CS267 Lecture: UPC 47

Global Memory Allocation

shared void *upc_global_alloc(size_t nblocks,
size_t nbytes);

nblocks : number of blocks
nbytes : block size

• Non-collective: called by one thread
• The calling thread allocates a contiguous memory

space in the shared space
• If called by more than one thread, multiple regions are

allocated and each thread which makes the call gets
a different pointer

• Space allocated per calling thread is equivalent to :
shared [nbytes] char[nblocks * nbytes]

5/30/2006 CS267 Lecture: UPC 48

Collective Global Memory Allocation

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks: number of blocks
nbytes: block size

• This function has the same result as upc_global_alloc. But this
is a collective function, which is expected to be called by all
threads

• All the threads will get the same pointer
• Equivalent to :

shared [nbytes] char[nblocks * nbytes]

CS267 Lecture 2 9

5/30/2006 CS267 Lecture: UPC 49

Memory Freeing

void upc_free(shared void *ptr);

• The upc_free function frees the dynamically allocated
shared memory pointed to by ptr

• upc_free is not collective

5/30/2006 CS267 Lecture: UPC 50

Distributed Arrays Directory Style
• Some high performance UPC programmers avoid the

UPC style arrays
• Instead, build directories of distributed objects
• Also more general

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));
upc_barrier;

5/30/2006 CS267 Lecture: UPC 51

Memory Consistency in UPC
• The consistency model defines the order in which one thread may

see another threads accesses to memory
• If you write a program with unsychronized accesses, what

happens?
• Does this work?

data = … while (!flag) { };
flag = 1; … = data; // use the data

• UPC has two types of accesses:
• Strict: will always appear in order
• Relaxed: May appear out of order to other threads

• There are several ways of designating the type, commonly:
• Use the include file:

#include <upc_relaxed.h>

• Which makes all accesses in the file relaxed by default
• Use strict on variables that are used as synchronization (flag)

5/30/2006 CS267 Lecture: UPC 52

Synchronization- Fence

• Upc provides a fence construct
• Equivalent to a null strict reference, and has the

syntax
• upc_fence;

• UPC ensures that all shared references issued
before the upc_fence are complete

5/30/2006 CS267 Lecture: UPC 53

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

• Scaling the number of processors
• Maximize single node performance

• Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

• Avoid (unnecessary) communication cost
• Latency, bandwidth, overhead
• Berkeley UPC and Titanium use GASNet

communication layer
• Avoid unnecessary delays due to dependencies

• Load balance; Pipeline algorithmic dependencies
5/30/2006 CS267 Lecture: UPC 54

One-Sided vs Two-Sided

• A one-sided put/get message can be handled directly by a network
interface with RDMA support

• Avoid interrupting the CPU or storing data from CPU (preposts)
• A two-sided messages needs to be matched with a receive to

identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)
• Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

CS267 Lecture 2 10

5/30/2006 CS267 Lecture: UPC 55

Performance Advantage of One-Sided Communication

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1. 0

1. 2

1. 4

1. 6
1. 8

2. 0

2. 2

2. 4

10 1000 100000 10000000S i z e (b y t e s)

• Opteron/InfiniBand (Jacquard at NERSC):
• GASNet’s vapi-conduit and OSU MPI 0.9.5 MVAPICH
• This is a very good MPI implementation – it’s limited by

semantics of message matching, ordering, etc.
• Half power point (N ½) differs by one order of magnitude

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d)

5/30/2006 CS267 Lecture: UPC 56

GASNet: Portability and High-Performance

(d
ow

n
is

 g
oo

d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong
GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea

5/30/2006 CS267 Lecture: UPC 57

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea
5/30/2006 CS267 Lecture: UPC 58

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea

5/30/2006 CS267 Lecture: UPC 59

Case Study 2: NAS FT
• Performance of Exchange (Alltoall) is critical

• 1D FFTs in each dimension, 3 phases
• Transpose after first 2 for locality
• Bisection bandwidth-limited

• Problem as #procs grows

• Three approaches:
• Exchange:

• wait for 2nd dim FFTs to finish, send 1
message per processor pair

• Slab:
• wait for chunk of rows destined for 1

proc, send when ready
• Pencil:

• send each row as it completes

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea
5/30/2006 CS267 Lecture: UPC 60

Overlapping Communication
• Goal: make use of “all the wires all the time”

• Schedule communication to avoid network backup
• Trade-off: overhead vs. overlap

• Exchange has fewest messages, less message overhead
• Slabs and pencils have more overlap; pencils the most

• Example: Class D problem on 256 Processors

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

16 KbytesPencils (single row)
64 KbytesSlabs (contiguous rows that go to 1 processor)

512 KbytesExchange (all data at once)

CS267 Lecture 2 11

5/30/2006 CS267 Lecture: UPC 61

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

.5 Tflops

5/30/2006 CS267 Lecture: UPC 62

Case Study 2: LU Factorization

• Direct methods have complicated dependencies
• Especially with pivoting (unpredictable communication)
• Especially for sparse matrices (dependence graph with holes)

• LU Factorization in UPC
• Use overlap ideas and multithreading to mask latency
• Multithreaded: UPC threads + user threads + threaded BLAS

• Panel factorization: Including pivoting
• Update to a block of U
• Trailing submatrix updates

• Status:
• Dense LU done: HPL-compliant
• Sparse version underway

Joint work with Parry Husbands

5/30/2006 CS267 Lecture: UPC 63

UPC HPL Performance

• Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
• ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
• UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

• n = 32000 on a 4x4 process grid
• ScaLAPACK - 43.34 GFlop/s (block size = 64)
• UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
Fl

op
/s

MPI/HPL

UPC

•MPI HPL numbers
from HPCC
database

•Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands
5/30/2006 CS267 Lecture: UPC 64

Summary
• UPC designed to be consistent with C

• Some low level details, such as memory layout are
exposed

• Ability to use pointers and arrays interchangeably
• Designed for high performance

• Memory consistency explicit
• Small implementation

• Berkeley compiler (used for next homework)
http://upc.lbl.gov

• Language specification and other documents
http://upc.gwu.edu

