
Building a Source-to-Source UPC-to-C Translator

by Wei-Yu Chen

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree ofMaster of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Katherine Yelick
Research Advisor

(Date)

* * * * * * *

Professor Rastislav Bodik
Second Reader

(Date)

Contents

1 Introduction 4

2 Background 5
2.1 Unified Parallel C. 5
2.2 The Berkeley UPC Compiler. 7

3 The UPC-to-C Translator: An Overview 8

4 Code Generation Issues 9
4.1 Portable Code Generation. 10
4.2 Handling Shared Expressions. 11
4.3 Code Generation Example. 11

5 Translator Output Performance – Vectorization 12
5.1 Implementation Approach. 13
5.2 Livermore Kernels . 13

6 Optimization Framework 15

7 Optimizing UPC Parallel Loop 16

8 Message Coalescing: Implementation and Results 19
8.1 Analysis for the Optimization. 19
8.2 Implementation Sketch. 19
8.3 Preliminary Evaluation. 22

8.3.1 Performance. 22
8.3.2 Programmability. 23

9 Automatic Split-phase Communication Generation 24
9.1 Algorithm Sketch. .25

9.1.1 Optimize Shared Pointer Arithmetic. 25
9.1.2 Split-phase Communication for reads. 26

9.2 Preserving the UPC Consistency Model. 28
9.3 Optimization Example. 28
9.4 Preliminary Results. 28

10 Related Work 29

11 Conclusion 31

2

Abstract

Unified Parallel C (UPC) is a parallel language that uses a Single Program
Multiple Data (SPMD) model of parallelism within a global address space.
The Berkeley UPC Compiler is an open source and high-performance imple-
mentation of the language. The choice of C as the code generation target
greatly enhances the compiler’s portability, as evidenced by its support of a
wide range of supercomputing platforms, including large-scale multiproces-
sors, vector machines, and network of workstations. In this paper I describe
the translator component of the Berkeley UPC Compiler, which is responsible
for performing UPC-to-C transformation and generating the necessary run-
time calls for communication. The goal of the translator is to generate high
quality C code while enabling easy porting of the compiler, and also provide a
framework that allows for extensive high-level optimizations. We use a com-
bination of micro-benchmarks and application kernels to show that our com-
piler can output C code that achieves good performance on both superscalar
and vector environments, despite the source-to-source transformation process.
We also investigate several communication optimizations, specifically target-
ing two optimizations can get significantly improve the performance of fine-
grained programs: message coalescing and split-phase communication gener-
ation.

3

1 Introduction

Global Address Space (GAS) languages have recently emerged as a promising al-
ternative to the traditional message passing model for parallel applications. De-
signed as parallel extensions for popular sequential programming languages, GAS
languages such as Unified Parallel C [25], Titanium [48, 28], and Co-Array For-
tran [39] provide better programmability through the support of a user-level global
address space, leading to more flexible remote accesses through language-level one-
sided communication. GAS languages thus offer a more convenient and productive
programming style than explicit message passing (e.g., MPI [36]), and good per-
formance can still be achieved because programmers retain explicit control of data
placement and load balancing. Another virtue of GAS languages is their versatil-
ity; for example, UPC’s flexible memory model is carefully designed so that it can
operate in both shared and distributed memory environments. While it has not yet
reached the level of MPI’s ubiquity, UPC implementations are now available on a
significant number of platforms [20, 26, 43], ranging from multiprocessors to the
many flavors of networks of workstations.

The Berkeley UPC Project is a research effort aimed at increasing the visibility
of the UPC language, by building a portable compiler framework that also offers
comparable performance to other commercial UPC implementations. To achieve
portability and high performance, the Berkeley UPC compiler uses a layered de-
sign, which can be tailored to adapt to the communication primitives and processor
architectures offered by different platforms. Specifically, the compiler generates C
code that contains calls to our UPC runtime interface [7], which is implemented
atop a language-independent communication layer called GASNet [9].

In this report, we describe our experiences with designing and implementing the
source-to-source translator in the Berkeley UPC Compiler [6]. The translator is de-
rived from the Open64 Compiler Suite [40], an open-source collection of optimiz-
ing compiler tools that can compile C,C++, and Fortran programs. The translator
helps achieve portability by both targeting C as its output format and employing a
transformation process that is mostly platform independent with the exception of a
few architecture specific parameters. Generating code for a new platform thus can
be as simple as changing the particular values of such parameters in a configura-
tion file. An equally important goal of the translator is to ensure that the sequential
portion of an UPC program, which is written just like regular C code, does not ex-
perience performance slowdown after the source-to-source translation. By keeping
the internal representation sufficiently high-level, our Berkeley UPC translator is
able to generate C output that closely resembles the original source. Empirical evi-
dence suggests that our translator can generate good-quality C output that performs
well on both scalar architectures and vector machines.

The second part of this report concentrates on our efforts in using the transla-
tor as a framework for experimenting with high-level UPC specific optimizations.
Because a thread can write and read shared memory directly, UPC encourages a
programming style that may result in many small messages. A major challenge
for a UPC compiler is thus to bridge the gap between fine- and coarse-grained
styles by providing automatic communication optimizations. Specifically, the op-

4

timizations should reduce both the number and the volumes of message traffic, as
well as hide communication latencies by overlapping communication with compu-
tation. We have designed and implemented several optimizations in our transla-
tor that enable fine-grained UPC programs to be compiled more efficiently. The
first optimization eliminates runtime affinity tests associated with UPC’s parallel
forall loop construct. The second optimization,message coalescing, transforms
fine-grained memory accesses into bulk transfers to reduce communication over-
head. Finally, the translator performs split-phase communication scheduling to ex-
ploit both communication-computation overlap and message pipelining. Prelimi-
nary results suggest that these optimizations are generally effective in reducing the
communication costs.

The rest of the paper is organized as follows. Section2 describes the UPC lan-
guage and provides an overview of the Berkeley UPC Compiler. Section3 presents
the source-to-source transformation process of the Berkeley UPC-to-C translator.
Section4 discusses our strategies for dealing with the several challenges encoun-
tered while implementing the translator, while Section5 examines the code gener-
ation quality of the translator, focusing on its ability to maintain the vectorizability
of the program. Section6 gives a summary of the Berkeley UPC translator’s op-
timization framework. Section7 presents our optimization work with the UPC
forall loop, while Section8 describes another loop optimization called message co-
alescing. Section9 details the translator’s strategy for split-phase communication
generation. Section10 lists the related work, and Section11concludes the paper.

2 Background

2.1 Unified Parallel C

UPC is a parallel extension of the ISO C programming language aimed at sup-
porting high performance scientific applications. The language adopts the SPMD
programming model, so that every thread runs the same program but keeps its
own private local data. Each thread has a unique integer identity expressed as
the MYTHREADvariable, and theTHREADSvariable represents the total number
of threads, which can either be a compile-time constant or specified at run-time. In
addition to each thread’s private address space, UPC provides a shared memory area
to facilitate communication among threads, and programmers can declare a shared
object by specifying theshared type qualifier. While a private object may only be
accessed by its owner thread, all threads can read or write data in the shared address
space. The shared memory space is logically divided among all threads, so from
a thread’s perspective the shared space can be further divided into a local shared
memory and remote one. Data located in a thread’s local shared space are said to
have “affinity” with the thread, and compilers can utilize this affinity information
to exploit data locality in applications to reduce communication overhead.

Pointers in UPC can be classified based on the locations of the pointers and of
the objects they point to. Accesses to the private area behave identically to regu-
lar C pointer operations, while accesses to shared data are made through a special
pointer-to-shared construct. The speed of local shared memory accesses will be

5

Thread 0 Thread 1

Shared
Memory

Private
Memory P1

P2

P3
P3

P3

P2P2

P1

P1 == private pointer (int *p)
P2 == pointer-to-shared (shared int *p)
P3 == shared pointer-to-shared (shared int * shared p)

Figure 1: Different type of UPC pointers.

lower than that of private accesses due to the extra overhead of determining affinity,
and remote accesses in turn are typically significantly slower because of the net-
work overhead. Figure1 illustrates three different kinds of UPC pointers: private
pointers pointing to objects in the thread’s own private space (P1 in the figure), pri-
vate pointers pointing to the shared address space (P2), and pointers living in shared
space that also point to shared objects (P3).

UPC gives the user direct control over data placement through local memory
allocation and distributed arrays. When declaring a shared array, programmers can
specify a block size in addition to the dimension and element type, and the system
uses this value to distribute the array elements block by block in a round-robin fash-
ion over all threads. For example, a declaration ofshared [2] int ar[10]
means that the compiler should allocate the first two elements ofar on thread 0,
the next two on thread 1, and so on. If the block size is omitted the value de-
faults to one (cyclic layout), while a layout of[] or [0] indicates indefinite block
size, i.e., that the entire array should be allocated on a single thread. A pointer-
to-shared thus needs three logical fields to fully represent the address of a shared
object: address, thread id, and phase . The thread id indicates the
thread that the object has affinity to, theaddress field stores the object’s “local”
address on the thread, while thephase field gives the offset of the object within
its block. Figure2 demonstrates how the fields in a pointer-to-shared are used to
access a shared value. In summary, a UPC pointer-to-shared thus can be classified
into three categories based on the data layout:block cyclic, cyclic, andindefinite.

Another interesting UPC feature is its support for both a strict and a relaxed
memory consistency model. Every shared variable access in UPC is type qualified
as either “strict” or “relaxed”, either explicitly or inferred from pragmas. The strict
memory model is analogous to sequential consistency in that it requires the actual
execution of the accesses on each thread to be consistent with program order, while
relaxed accesses only need to preserve local data dependencies. The difference be-

6

Thread 1 Thread N -1

Address Thread Phase

0 2addr

Phase Shared
Memory

Thread 0

block
size

start of array object

…

…

Figure 2: UPC pointer-to-shared components.

Unified Parallel C at LBNL/UCB

TranslatorUPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independent

Figure 3: Architecture of the Berkeley UPC Compiler

tween the two models is visible only in a program with adata race, which occurs
when two threads access the same memory location with no ordering constraints
between them, and at least one of the accesses is a write [38]. The goal of the UPC
memory model is to effectively exploit the tradeoff between programmability and
performance; relaxed accesses offer better performance as they can be aggressively
optimized by compilers as long as local data dependency on each thread is still pre-
served, but programmers are left with the burden of ensuring that their code is free
of race conditions. Other notable features of UPC language include dynamic allo-
cation functions, synchronization constructs, and a builtin parallel loop construct.
The UPC language specification describes them in more details [25].

2.2 The Berkeley UPC Compiler

Figure3 shows the overall structure of the Berkeley UPC Compiler [6], which is
divided into three main components: the UPC-to-C translator, the UPC runtime
system, and the GASNet communication system.

7

During the first phase of compilation, the Berkeley UPC compiler translates
UPC programs into C code in a platform-independent manner, with UPC-related
parallel features converted into calls to the runtime library. The translated C code is
then compiled using the target system’s C compiler and linked to the runtime sys-
tem, which performs initialization tasks such as thread generation and shared data
allocation. The Berkeley UPC runtime delegates communication operations such
as remote memory accesses to the GASNet communication layer, which provides a
uniform interface for low-level communication primitives on all networks.

We believe this three-layer design has several advantages. Because of the choice
of C as our intermediate representation, our compiler will be available on most com-
monly used hardware platforms that have an ANSI-compliant C compiler. In addi-
tion to the portability benefits, the layered design also means that each component
can be implemented and performance-tuned individually. The backend C compiler
is free to aggressively optimize the intermediate C output, and the UPC-to-C trans-
lator can utilize its UPC-specific knowledge about shared memory access patterns
to perform communication optimizations. Moreover, the communication overhead
is generally low since the GASNet system can directly access the networking hard-
ware instead of going through another communication layer such as MPI, and many
runtime and GASNet operations are implemented using macros or inline functions
to eliminate function call overhead.

3 The UPC-to-C Translator: An Overview

Like the Berkeley UPC Compiler, the UPC-to-C translator is also divided into three
components: the front end, the back end, and whirl2c. Figure4 depicts the transla-
tor’s compilation process.

Preprocessed File

C front end

Whirl w/ shared types

Backend lowering

Whirl w/ runtime calls

Whirl2c

ISO-compliant C Code

LNO

WOPT

Optimized Whirl

Figure 4: UPC-to-C Translation Process

• Front end: Upon receiving a preprocessed UPC file, the translator’s front
end parses and type checks the input, and generates a high level WHIRL

8

(Open64’s intermediate representation) file. UPC-specific information such
as shared types and block size for distributed arrays are preserved in the sym-
bol table, so that the later translator phases can utilize the information in
performing optimization and code generation. We have also extended the
front end code base with several features from ISO C99 standard [12] such as
mid-block declarations and declaration expressions in a for loop header.

• Back end: The primary functionality of the back-end is to convert expres-
sions involving a pointer-to-shared into the appropriate runtime library calls.
Specifically, pointer arithmetic on a shared address is converted into function
calls; the translator selects one of the runtime’s three different functions for
shared address calculation, based on the blocksize of the pointer-to-shared.
Similarly, loads and stores of shared variables may require communication
and are also transformed into runtime calls. The actual runtime function in-
voked again depends on a number of factors such as the type being loaded
and whether the shared memory access is strict or relaxed. An optional op-
timization phase, which includes both a loop nest optimizer (LNO) and a
general-purpose global scalar optimizer (WOPT), can be invoked before the
lowering of shared expressions. Details about the optimization phase are pre-
sented in Section6.

• Whirl2c: The final component’s job is to convert the WHIRL representation
into ISO-compliant C code, with shared pointers declared as opaque UPC
pointer-to-shared types that are defined internally in the runtime system. This
enables us to experiment with different pointer-to-shared representations in
the runtime system without having to modify the translator. This capability
has proved useful on platforms such as the Cray X1, where we can more
efficiently implement pointer-to-shared operations by exploiting the hardware
global address space support [5]. Whirl2c attempts to generate high-level
C language constructs when possible (e.g., using struct member accesses in
favor of pointer arithmetic), so that its output will bear sufficient resemblance
to the source code. This stage also provides special support for static and
global shared variables, which can not be initialized statically as their storage
is not allocated until runtime. Finally, an indirect access scheme is adopted
for applications running with POSIX threads so that each pthread gets its
own private copy of thread-local variables, and whirl2c is responsible for
generating the address translation macros when accessing such variables in
the program.

4 Code Generation Issues

In this section, we describe several code generation issues encountered during our
implementation of the Berkeley UPC translator, and our approaches for handling
them.

9

4.1 Portable Code Generation

Since the Berkeley UPC translator outputs C code, it avoids difficulties associated
with cross compilation that are often encountered when compiling for a variety of
target systems. The infrastructure of the translator is flexible enough that it can
perform code generation for both 32-bit and 64-bit platforms, and we have also
extended the front end to obtain the values of architectural dependent parameters
such as integral type width and struct alignment rules in a configuration file. In
general, the generated code for different platforms will be identical (modulo dif-
ferences introduced by the system headers) with the exception of parameters such
as the size of pointers and primitive types that are either explicitly referenced in
the program or implicitly used during the generation of runtime calls. Thus, while
Open64 represents the scalar types internally by their type size (e.g., on IA-32 int
and long would be considered equivalent since they are both four bytes), different
integral types will remain distinct in the output to avoid both C compiler warnings
and unsafe integer downcasts. Another important platform-specific parameter is the
size of UPC pointer-to-shared object, which is usually different from that of regular
C pointers. This leads to a subtle issue for structs containing pointer-to-shared, as
their size needs to be adjusted as do the offsets of field accesses into such structs.
The offset padding is performed in the backend, so that the preceding analysis and
optimization phase of the translator can treat pointer-to-shared as regular pointers.

Another challenge introduced by the choice of C as the translation target con-
cerns header file conflicts. The translated code must include the Berkeley UPC run-
time header file to access the library function prototypes, and the runtime header in
turn includes a variety of the standard C library headers to implement tasks such as
I/O, timing, and communication. Consequently, duplicate type and variable decla-
rations may occur if the UPC program itself also includes the standard C headers,
and the translator emits their contents in the output. Our solution is to distinguish
the files that contain UPC constructs and those that do not, and avoid outputting any
variables and struct types for the latter, as such ordinary C files can be safely re-
compiled by the backend C compiler. Instead, the#includedirectives for these files
are regenerated in the same relative order in the translated code, taking advantage
of the fact that C library headers are guarded against reinclusion. Furthermore, only
the toplevel inclusions (files explicitly included by the user) are reinserted into the
output file. The Berkeley UPC compiler automatically recognizes files containing
UPC constructs (whose contents thus must be emitted) by checking for the presence
of shared expressions and declarations in a file and its recursively included contents,
and no user intervention is therefore required. One code pattern that our “reinclude”
scheme does not handle correctly arises when the behavior of a#includeheader de-
pends upon the prior presence of macro variable definitions; a common example is
the use of theNDEBUGvariable to turn off assertions in a program. While this prob-
lem can potentially be fixed by also preserving macro definitions in the output, we
have elected not to pursue this option, since such a fix would require the translator
to have its own preprocessor and may thus have adverse effects on the compiler’s
portability.

10

4.2 Handling Shared Expressions

Pointer-to-shared variables in UPC are almost as expressive as normal C pointers
(one exception is that pointers to shared functions have undefined behavior), and
can generally appear anywhere in the program where it is legal for a C pointer.
Shared expressions that must be converted into equivalent runtime functions by the
Berkeley UPC translator include shared memory accesses, pointer-to-shared arith-
metic, as well as equality tests and cast operations involving pointers-to-shared.
Shared memory accesses can be easily recognized internally by the type of the
operands. For accesses to shared objects with integral or floating point types that
can fit inside a register, the translator generates memory-to-register runtime com-
munication calls to avoid unnecessary local memory operations, while other ac-
cesses such as struct copying are translated into the more general memory-to-memory
puts and gets, with the translator responsible for spilling out stack allocated tem-
poraries to obtain a lvalue. Depending on whether the memory access is strict or
relaxed, the translator must also choose between the blocking and non-blocking
variants of the communication functions. Pointer-to-shared arithmetic expressions
are always marked internally with a preceding type cast, so that they can be quickly
identified and transformed into the appropriate runtime calls in the translator’s low-
ering phase; explicit casts of pointer-to-shared into private types are handled in the
same manner. The translator does not make any assumptions about the internal lay-
out of the pointer-to-shared object while performing the above transformations, so
the Berkeley UPC runtime layer is free to select the pointer-to-shared representation
most suitable for the target platform.

4.3 Code Generation Example

Figure5provides an example on how UPC programs are translated into C code. The
UPC code fragment performs matrix-vector multiplication between a distributed
two-dimensional array and a shared vector located on thread 0. In the translated
C code (for brevity, declaration and allocation of the shared arrays and temporary
variables are omitted), both shared pointer arithmetic expressions and shared mem-
ory accesses are converted to runtime calls with the “upcr” prefix. Different run-
time operations are chosen for the two shared variables, asmat is distributed block
cyclically while vec is declared as an indefinite array. Since both shared arrays
have relaxed type, the translator generates one-sided nonblocking communication
calls to fetch the remote values. The nonblockingGETNBcall issues a request for
the communication subsystem to begin the data transfer and return a handle, which
later can be used in a synchronizing call (WAIT SYNCNB) to wait for the comple-
tion of the request. Shared variable writes can be implemented analogously. The
example shows but a small subset of functions available in our runtime layer, and
the translator also generates code for other communication patterns such as bulk
transfer and blocking operations.

11

sum = 0.0;
i = ((int) upcr_mythread ());
while(i <= 9)
{

j = 0;
while(j <= 9999)
{

_bupc_Mptra0 = UPCR_ADD_PSHAREDI(vec, 8, j);
_bupc_Msync2 = (upcr_handle_t) UPCR_GET_NB_PSHARED(

&_bupc_spillld1, _bupc_Mptra0, 0, 8);
UPCR_WAIT_SYNCNB(_bupc_Msync2);

_bupc_Mptra3 = UPCR_ADD_SHARED(
mat, 8, (_UINT32)(i) * 10000U, 10000);

_bupc_Mptra4 = UPCR_ADD_SHARED(
_bupc_Mptra3, 8, j, 10000);

_bupc_Msync6 = (upcr_handle_t)
UPCR_GET_NB_SHARED(
&_bupc_spillld5, _bupc_Mptra4, 0, 8);

UPCR_WAIT_SYNCNB(_bupc_Msync6);
_2 :;
j = j + 1;

}
_1 :;
i = i + 1;

}

#define ROW 10
#define N 10000
shared [N] double mat[ROW*THREADS][N];
shared [] double vec[N];

…

double sum;
sum = 0;
for (int i = MYTHREAD;

i < ROW*THREADS;
i+=THREADS) {

for (int j = 0; j < N; j++) {
sum += mat[i][j] * vec[j];

}
}

Original UPC Code Translator C Output (with one thread)

Figure 5: UPC-to-C Translation Process

5 Translator Output Performance – Vectorization

The popular GAS languages are designed as parallel extensions of sequential pro-
gramming languages, and UPC is no exception. A thread’s local computation in
its private address space is generally written in a language very similar to ordi-
nary C code, and therefore uniprocessor execution time is an important criteria in
evaluating a UPC compiler’s performance [24]. Although our translator preserves
the semantics of the sequential portions of the program, it is infeasible to expect
the translated output to be syntactically identical to the program source, due to opti-
mizations performed by the translator and the lack of a one-to-one mapping between
its intermediate representation and the C language. In previous work [16] we have
discovered that despite a source-to-source translation from UPC to C, our compiler
still delivers good serial performance on conventional superscalar architectures. It
is less clear, however, whether such syntactic discrepancies will have a performance
impact on vector platforms such as the Cray X1 [22], whose dramatically different
architectural approach makes vectorization the dominant factor for achieving high
performance. A common performance attribute of parallel vector systems is that
the vector unit executes substantially faster than its scalar counterpart; for the Cray
X1, in addition to operating at twice the clock speed, its ability to overlap memory
operations with vector computation makes the vector unit significantly more pow-
erful than the scalar pipeline. Furthermore, the Cray C compiler’s vectorizer [21]
is sensitive to changes in inner loop expressions; our experiments have identified

12

several constructs that tend to inhibit a loop’s vectorization, such as function calls,
type casts, the address-of operator, and access to global variables in the presence of
pointer arithmetic. One interesting metric of the translator’s code generation qual-
ity is thus its serial performance on a vector architecture. Specifically, it is worth
investigating whether the translator’s code generation process can be extended to
minimize interferences with the C compiler’s ability to automatically vectorize ap-
plication code.

5.1 Implementation Approach

Our goal is to evaluate the serial performance of the Berkeley UPC compiler, con-
centrating on its ability to maintain the vectorizability of the sequential portion of
the program. With full optimizations enabled, the Cray C compiler [21] performs
automatic vectorization on expressions inside a loop that it detects to be free of cy-
cles of dependences, after applying vectorization-enabling transformations such as
inlining, loop splitting, and loop interchange. The compiler also vectorizes certain
special recurrences such as reductions and scatter/gather operations. Cray C pro-
vides two program-level techniques to assist the compiler’s alias and dependence
analysis: restrict pointers and the pragmas that declare a loop to be free of
vector dependences or recurrences between array accesses. As such, our strategy
is to keep the translated output as syntactically similar as possible to the origi-
nal source. The level of the intermediate representation is kept sufficiently high
such that C loops are preserved in their original form. Similarly, array expressions
are recognized and handled specially by the translator, both to allow for more ag-
gressive transformations by its optimizer and to provide the C compiler with more
precise information. Multidimensional arrays are preserved in its original form in-
stead of being linearized into one dimensional arrays. The Berkeley UPC compiler
supportsrestrict -qualified pointers, and additionally UPC source-level vector-
ization pragmas are accepted by the translator and appear unchanged in the same
relative location in the generated C output.

5.2 Livermore Kernels

We use the C version of the Livermore Kernels [35] to evaluate the serial perfor-
mance of our compiler. The Livermore Loops consist of 24 sequential computation
loops extracted from common scientific applications, and should closely reflect the
sequential computational performance offered by our compiler. In particular, the
X1’s reliance on the vector unit to achieve both fast computation and high mem-
ory bandwidth means that application performance will often hinge on whether the
main computation loops can be efficiently vectorized. In this test, we do not supply
any vectorization pragmas and do not perform any manual transformations, as our
goal is to test if the translation process interferes with Cray C’s automatic vector-
ization. Table1 presents the aggregate performance for both the original C source
and the translated output with the-O3 flag, while Figure6 displays the normalized
performance of the individual kernels.

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.8

0.85

0.9

0.95

1

1.05

1.1

Kernel

C
 ti

m
e

/ U
P

C
 ti

m
e

Livermore Loops

Figure 6: Performance of the individual Livermore kernels

Geo. Mean Avg. Rate Har. Mean Max Min
C 160 756 58.7 6561 9.0
UPC 161.9 762 59.6 6652 9.0

Table 1: Aggregate performance of the Livermore Loops (in MFLOPS)

14

As Table1 shows, Berkeley UPC’s translated output performs almost identically
to the original C source code. Performance results from the individual benchmarks
confirm with this observation; the ratio of UPC running time versus C running time
is within 5% for nearly all of the kernels, which can be attributed to measurment
noises. One notable exception occurs in kernel 8, where Berkeley UPC’s output
surprisingly outperforms the C code by about 10%. Examination of the translated
output suggests that its performance benefits from the Berkeley UPC translator rec-
ognizing several three dimensional array accesses in the loop as common subex-
pressions and replacing them with stack temporaries. The introduction of the stack
variables does not affect vectorization, and saves three address calculations per it-
eration. Because the translated output exhibits similar performance to the C code
for most of the kernels, we expect the Berkeley UPC compiler to offer competitive
serial performance on a vector platform like the X1.

6 Optimization Framework

Having presented the source-to-source compilation strategy and evaluated the se-
quential performance of the Berkeley UPC-to-C translator, in the second part of
the paper we focus on the translator’s parallel performance. In particular, we de-
scribe the preliminary experiences with designing and implementing a number of
optimizations specifically targeted at improving UPC communication performance.
One of the reasons Open64 was chosen as the code base of our translator is its exten-
sive collection of optimizations. Not only are standard compiler optimizations such
as copy propagation, partial redundancy elimination, and dead code elimination
supported through its global scalar optimizer (WOPT), but Open64 also provides
a high level loop nest optimizer (LNO) that recognizes and applies various loop
transformations and optimizations. A framework for interprocedural analysis and
optimizations is also available. For our source-to-source transformation several of
Open64’s optimizations are not directly applicable, since they either produce out-
puts that are too low-level to be expressed in C (e.g., prefetching individual loads),
or can be performed equally well by the backend compiler. Therefore, while em-
ploying many of Open64’s large repertoire of optimizations in the compilation pro-
cess, we also have supplied several optimizations that require UPC specific knowl-
edge and therefore could not be performed by a C compiler.

Figure7 summarizes the overall structure of the Berkeley UPC-to-C translator’s
optimization framework. The process starts from Open64’s Preopt optimizer [34],
which serves as the front end of both the loop nest optimizer (LNO) and the global
optimizer (WOPT). Accepting program input in WHIRL format, Preopt builds a
control flow graph and a Static Single Assignment (SSA) representation, and per-
forms a number of high-level optimizations such as copy propagation and dead
code elimination. After the optimizations are completed, it converts the program
back into WHIRL form, and generates the def-use chain information for LNO. The
LNO component performs transformations such as fusion, interchange, and tiling
on loops that have the semantics of Fortran DO Loops [47]. Specifically, a DO loop
contains a single index variable, the condition expression is a comparison on the

15

PREOPT

LNO
upc_forall optimization
message coalescing

WOPT
split-phase communcation

PREOPT Standard analyses and
optimization

Loop transformations
UPC specific loop optimizations

Standard analyses and
optimization

PRE
Communication scheduling

Figure 7: Optimization framework of the translator

Name System Network CPU
Seaborg IBM RS/6000 SP SP Switch 2 375MHz Power 3+
Flyer Compaq Alphaserver ES45Quadrics Elan 3 1GHz Alpha
Ram SGI Altix shared memory 1.5 Itanium 2

Table 2: Machine summary

value of the index variable, and the lower bound, upper bound, and stride of the
loop are all loop-invariant. We have introduced two UPC-specific optimizations at
the end of the LNO phase. The first optimization, described in Section7, focuses on
eliminating the runtime overhead of UPC’s parallelforall loop, while the sec-
ond optimization, message coalescing, is explained in detail in Section8. WOPT
is invoked after LNO, again with Preopt as the front end to perform the necessary
analysis. Instead of running Open64’s SSAPRE optimization [17], which produces
low-level WHIRL nodes that can not be safely translated into C code, however,
we have implemented our own algorithm that targets shared memory accesses and
pointer arithmetic expressions in UPC. Also based on the SSA representation, our
algorithm combines partial redundancy elimination with communication schedul-
ing to automatically generate split-phase communication calls. The algorithm is
presented in Section9. Table2 contains a summary of the machines where the
experiments on the optimizations are performed.

7 Optimizing UPC Parallel Loop

To simplify the task of parallel programming, UPC includes a builtinupc forall
loop that distributes iterations among the threads. Theupc forall loop behaves
like a C for loop, except that the programmer can specify an affinity expression
whose value is examined before every iteration of the loop. The affinity expression

16

can be of two different types: if it is an integer, the affinity test checks if its value
modulo THREADSis the same as the id of the executing thread; otherwise, the
expression must be a shared address, and the affinity test checks if the running
thread has affinity to this address. The affinity expression can also be omitted, in
which case the affinity test is vacuously true and the loop behaves as if it is a C
for loop. A thread executes an iteration only if the affinity test succeeds, and the
upc forall language construct thus provides an easy to use syntax to distribute
the computation load to match the data layout pattern.

UPC forall loops provide a convenient syntactic sugar for the purposes of thread
coordination and preventing inadvertent remote accesses, but its primary drawback
is the runtime overhead incurred by the affinity tests. Not only do these affinity tests
have to be executed on each iteration by all threads, but the presence of the branches
in the loop can also inhibit many useful loop optimizations. Fortunately, while their
values naturally changes from iteration to iteration, affinity expressions can often
be derived directly from loop induction variables; for such common special cases,
we can eliminate the runtime affinity tests by incorporating their thread-iteration
mapping constraints into the loop’s bound and stride.

for(i = L; i < U; i ++; i+c)
...

int ofst = MOD(MYTHREAD - L - c, THREADS);
for(i = L+ofst; i < U; i += THREADS)

...

Figure 8: Forall Loop Affinity Test Removal

Our optimization operates on forall loops with unit stride (either1 or −1); op-
timizing loops with non-unit stride is possible, but would involve more expensive
operations such as greatest-common-divisor, and such forall loops occur relatively
infrequently in practice. Another precondition is that the loop must be recognized
by the loop nest optimizer as a DO loop. If the affinity expression is an integral
expression of the formi+ c, wherei is the primary induction variable andc is loop-
invariant, we apply the transformation illustrated in Figure8, to yield an equivalent
for loop with the affinity test eliminated. TheMOD operation performs modular
arithmetic, andMOD(a, b) returns a value between0 and b − 1 if b is positive.
When the affinity expression is a shared address, we focus on the common special
case of the form&a[i], wherea is a shared array or pointer andi the induction vari-
able. Once the base addressa is established to be loop invariant, three transforma-
tions are available to eliminate the affinity tests and can be chosen depending ona’s
blocksize. In the trivial case whena is indefinite, all of its elements will be on the
same thread, and we simply need to test the variable’s affinity once before execut-
ing the loop. Ifa is cyclic, the affinity expression is equivalent toi + threadof(a),
where the second operand computes the thread thata[0] locates on; the loop then is
optimized with the transformation shown in Figure8. Finally if a is block cyclic,

17

a two-level nested loop can be used in place of the original forall loop. The outer
loop will take a stride ofTHREADS ∗ BLOCKSIZE(a), while the inner loop
iterates through the executing thread’s block in unit stride.

Vector Addition

1

10

100

1000

1 2 4 8 16 32
Threads

M
O

P
S

 (
lo

g
 s

ca
le

) base int

base
addr
opt int

opt addr

Figure 9: Vector Addition – Millions of Additions per Second

A vector addition benchmark is used to illustrate the performance gain resulting
from the affinity test removal. The program uses a forall loop to add two cyclic
arrays element by element, storing results to another shared cyclic array. As the
benchmark contains a minimal amount of computation, affinity test overhead can
contribute significantly to the forall loop’s execution cost. We experiment with both
integer and shared address affinity expressions for the loop. The results, presented
in Figure 9, were collected on a 256-processor SGI Altix system with Itanium2
processors [14]. Removing runtime affinity tests substantially increases the perfor-
mance of the benchmark, delivering a more than 20% speedup for the sequential
case. More importantly, it significantly improves the program’s scalability, since
each thread no longer has to execute iterations that do no useful work other than the
affinity tests. Whereas the unoptimized scales poorly even with a small number of
threads, the optimized output achieves linear speedup.

Finally, since our optimization accepts only a few specific affinity expression
patterns (namelyi + c and&a[i]), one natural question is whether the technique
may be too restrictive as to exclude a large number of forall loops found in com-
mon UPC programs. We seek the answer by analyzing the results of applying our
optimizations to the Berkeley UPC Compiler’s regression testsuite. The translator
identifies 122 forall loops from the testsuite that contain an affinity expression, and
the affinity tests are eliminated from 80% of them, suggesting that our optimization
is powerful enough to capture most common usages of UPC forall loops.

18

8 Message Coalescing: Implementation and Results

shared [] int *r;
...
for(i = L; i < U; i += s)

e1 = e2 + r[i];

Figure 10: Unoptimized loop.

int size = (U - L) * sizeof(int);
int *lr = malloc(size);
upc memget(lr, r, size);
for(i = L; i < U; i += s)

e1 = e2 + lr[i];
free(lr);

Figure 11: Loop after Message Coalescing.

Empirical data on the overhead and latency of today’s high-performance net-
works speak volumes about the effectiveness of message coalescing and aggrega-
tion [4]; by combining small puts and gets into large messages, one can save signif-
icantly on the per-message startup overheads. The most common realization of this
optimization, calledmessage coalescing, significantly improves the performance
of a fine-grained loop by fetching all the remote values it needs in a single bulk
transfer outside the loop instead of issuing fine-grained read operations in every it-
eration. As a well known and extremely important optimization for amortizing the
cost of small message traffic, message coalescing has been implemented in a num-
ber of compilers for Fortran-like languages [27, 46]. In this section, we describe
the implementations of message coalescing in the Berkeley UPC translator.

8.1 Analysis for the Optimization

Our message coalescing optimization again operates on loops that have been marked
by the loop nest optimizer as possessing the semantics of Fortran DO loops. To
ensure that the resulting transformations do not violate the UPC memory model,
the analysis further prohibits synchronization statements, function calls, and strict
memory accesses from appearing in the loop body. Once a loop has been identified
as a potential coalescing candidate, the analysis walks through the loop expressions
and build for each distinct array symbol a(lo, up) bounding box on the range of
its possible index values, which must be affine expressions of the index variable.
For example, ifar[i] andar[i + c] are both present in the loop body, a region is
computed for the symbolar by taking the union of the ranges projected by the two
index expressions. The array symbols are not limited to variables with array types
and can include pointers, provided that the pointer object is not modified in the
loop. Coalescing-inhibiting array dependences are detected by intersecting thedef
andusesets of the loop.

8.2 Implementation Sketch

The choice of code generation for message coalescing varies significantly based
on the layout and the access pattern of the shared array in question. At the lan-
guage level, UPC provides several point-to-point bulk communication library func-
tions that perform reads and writes on contiguous memory regions between the

19

dst (private)

src (shared)
P0 P1 P2

a) Message vectorizing cyclic array

ar(U1–L1+1)(U2–L2+1)

l1
l2

u1

u2

for (i = L1; I <=U1; i++)
for (j = L2; j <= U2; j++)

exp = ar[i][j];

b) Message vectorizing 2D indefinite array

Figure 12: Message Coalescing

private and shared address space. To handle non-contiguous transfers, we have re-
cently proposed library extensions that support both indexed and strided memory
accesses [10], and reference implementations already exist in the Berkeley UPC
runtime. Our message coalescing optimization targets both interfaces and is thus
able to support a variety of array access patterns commonly observed in scientific
applications.

In the simplest case, the shared array is one-dimensional and resides exclusively
on one thread (calledindefinitely blockedarrays in UPC), so that only one bulk
communication call is required to fetchup− lo+1 elements from the remote array.

Figure10 and 11 illustrates the application of message coalescing for such a
scenario1. Once the remote data is transfered into a local private buffer, the op-
timization can replace all references to the original shared array with equivalent
accesses to the private array. When the lower bound is not a zero constant, the
index expressions used by the local array must also be adjusted by subtracting the
lower bound’s value, asshared ar[i] refers to the same content aslocal ar[i− lo].
In the common special case where both the lower and upper bound of the loop are
compile-time constants, a stack array is allocated instead of calling malloc() to save
the heap management overhead. Finally, a unit-strided writes could also be vector-
ized in the same manner, except thatupc memput must be invoked at loop exit to

1for brevity, some safety check code (e.g., checking loop is executed at least once) are omitted

20

store the new values of the shared array.
In a more advanced scenario, the shared array is still one-dimensional but is

now (block) cyclically distributed, so that data may need to be obtained from mul-
tiple threads. Our optimization handles this case by generating a point-to-point
bulk upc memget call to each individual thread, copying remote data in units of
blocks to simplify the shared address calculation. A temporary two-dimensional
private array is allocated to serve as the destination buffer of the memget calls, with
ceil(number of blocks/threads) ∗ blocksize elements for each thread. For maxi-
mal performance, the different memgets to the individual threads are overlapped to
hide their communication latencies. After the bulk communication calls have com-
pleted, a final step copies the data from the two-dimensional temporary buffer into
an one-dimensional local array following UPC shared pointer arithmetic rules (i.e.,
first block of thread 0 is copied first, followed by the first block of thread 1, and so
on), so that the private array can be accessed with the same index expressions used
by the original shared array. Figure12a depicts graphically the code generation
steps of vectorizing accesses to an one-dimensional block cyclic array.

For the previous two access patterns, the accessed elements on the individual
threads are always contiguous, and it thus suffices to copy them with the existing
UPC point-to-point memcpy library functions. For a two-dimensional array tra-
versed inside a two-level loop nest, however, such code generation strategy may no
longer be appropriate, since not all of the columns and rows of the array will be
accessed. If the two-dimensional array is indefinite, our optimization can more effi-
ciently vectorize the code by utilizing the strided memcpy functions in our runtime
interface. These functions transfer a list of fixed sized regions with a single fixed
stride separating them, and accept as arguments the starting address, region length,
distance (stride) between the regions, and the number of regions of both the source
and the destination array. This interface simplifies the code generation of vectorized
two-dimensional indefinite array accesses: the region length is simply the number
of columns to be copied, number of regions is the row count, and the stride is just
the length of the inner dimension of the array. Thus, for the sample code shown
in Figure12b, our analysis will compute a bounding box for each dimension of
the shared array, and use the strided memget function to transfer elements in the
rectangular box into a private buffer. An alternative code generation scheme we
considered is to combine message coalescing with pipelining; the inner loop is
message coalesced by fetching one entire row in a single bulk call, while the outer
loop is software pipelined so that the communication overhead of the bulk transfers
can be overlapped. The performance tradeoff between the two methods will depend
on factors such as the latency and bandwidth of the underlying networks, and thus
vary from platform to platform.

Our current implementation could optimize most one-dimensional array access
in a single loop nest, but more complicated communication patterns are still unsup-
ported. On the top of our priority list is to generalize the analysis to handle multidi-
mensional arrays that are either block cyclically distributed or have non-unit-stride
accesses. Such access patterns are inappropriate for theboundmethods mentioned
above, which involve retrieving a bound box that contain the needed elements; a
potentially large number of remote elements may be fetched but never used, result-

21

ing in a substantial performance penalty. Instead, we need to opt for a more general
approach by passing a list of fixed-size (one element) regions to the Berkeley UPC
runtime, which will be responsible for performing the required communications
to the different threads. Another future plan is to support irregular array access
patterns (e.g.,a[b[i]]) found in sparse matrix vector multiply applications with the
inspector-executor model [45].

8.3 Preliminary Evaluation

One advantage Global Address Space languages such as UPC have over message-
passing based programming models is that communication can be conveniently ex-
pressed as reads and writes to the shared memory space, which allows programs
to easily build shared data structures. Studies [8] have pointed out, however, the
severe performance issues that shared-memory style UPC applications face on dis-
tributed memory platforms, due to the excessive amount of small message traffic
generated. As a result, experienced UPC programmers usually code their applica-
tions with coarse-grained parallelism to ensure performance portability, even when
the application logic can be expressed more naturally with fine-grained communica-
tion. By automatically transforming fine-grained shared reads and writes into bulk
communication calls, message coalescing holds great potentials in narrowing the
performance gap between the shared memory programming style and the coarse-
grained communication paradigm for UPC programs. The effectiveness of message
coalescing can thus be evaluated both in terms of performance and programmabil-
ity. Not only do we seek to demonstrate that message coalescing of fine-grained
code could perform as well as hand optimized code, but we also want to assess
the strength of the analysis by examining UPC benchmarks to count the number
of loops that can benefit from the optimization, thereby relieving application de-
velopers from the burden of manually converting fine-grained accesses into bulk
communication calls.

8.3.1 Performance

To evaluate the performance of message coalescing, we present data from a simple
dense matrix-vector multiply benchmark in UPC. The matrix is partitioned cycli-
cally by row, and we experiment with both an indefinite (entirely located on thread
0) and a cyclic distribution of the vector. Three different code configurations were
compared: a fine-grained version in which each thread has to repeatedly fetch the
remote vector elements to perform its local computations, the compiler-optimized
code of the fine-grained loop, and finally a coarse-grained version of the benchmark
that fetches the entire vector once and saves the values in a local buffer.

Figure13presents the performance of the matrix-vector multiply under the dif-
ferent configurations. The results were collected on the machine Flyer and Seaborg
in Table2. As expected, the message coalesced code significantly outperforms the
naive version by more than two orders of magnitude, as remote values may need to
fetched in every iteration of the inner loop in the latter case. Also not surprisingly,
the message coalesced version performs quite similarly to the manually optimized

22

matvec multiply (elan)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8Threads

Ti
m

e
(s

ec
on

ds
)

comp-indefinite
man-indefnite
comp-cyclic
man-cyclic

matvec multiply -- SP

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8Threads

tim
e

(s
ec

on
ds

)

comp-indefinite

man-indefnite

comp-cyclic

man-cyclic

speedup over fine-grained code

0

50

100

150

200

250

0 2 4 6 8

Threads

sp
ee

du
p

elan comp-indefinite
elan comp-cyclic

Figure 13: Performance Results of Matrix-Vector Multiply

version, given the close resemblance of their code and the same bulk communi-
cation pattern they employ. One notable distinction between message coalescing
and user’s manual optimizations is that the former can target the nonblocking bulk
communication calls provided by the Berkeley UPC runtime, a feature that is not
yet available at the language level. When the vector is cyclically distributed, the
message coalescing optimization is able to exploit this ability to overlap communi-
cations to different threads and thus substantially outperform bulk style UPC code
on Flyer’s Quadrics network. From the results of the benchmark, we therefore
conclude that for fine-grained accesses to one dimensional shared arrays, message
coalescing can produce code that performs as well as the manually optimized code,
regardless of whether the array is cyclically or indefinitely distributed.

8.3.2 Programmability

Good performance of the generated code alone does not make message coalescing
a useful UPC optimization. If the analysis is too conservative, programmers will
still be forced to manually optimize their fine-grained loops due to fears that they
may not be recognized as message coalescing candidates. To evaluate the accuracy
of the analysis, we examine several of the UPC NAS parallel benchmarks [3] (IS,
MG, FT, CG) and report instances of fine-grained loops that can be successfully
message coalesced by our optimizations. Since for performance reasons most of
the benchmarks have been implemented using coarse-grained communication, we

23

additionally manually convert the bulk communication calls (e.g.,upc memget)
into fine-grained shared memory accesses in a loop, and see if they can be message
coalesced.

shared[] dcomplex *shared reshufflearr shd[THREADS];
...
// Broadcast the shared pointers
for (i = 0; i < THREADS; i++)
reshufflearr[i] = reshufflearr shd[i];

Figure 14: UPC code from FT benchmark that can be message coalesced

In the IS benchmark, which is written in bulk synchronous style, we discov-
ered that all three of theupc memgets in the program can be message-coalesced
when converted back into loop form. Similarly, our analysis is strong enough to
recognize all four memgets in the MG benchmark as message-vectorizable when
the calls are rewritten as fine-grained accesses in a loop. While such transforma-
tions will not result in performance gains compared to the original benchmarks, it
does mean that our optimization can relieve programmers the trouble of explicitly
generating the bulk communication calls. More encouragingly, both the FT and the
CG benchmark contain loops that perform fine-grained remote accesses to broad-
cast the elements of a (block) cyclic array to all threads (Figure14); since UPC does
not support multi-node communication routines at the language level, code patterns
such as broadcast and reduction could not easily be expressed with bulk transfers.
The Berkeley UPC translator, however, is able to automatically apply message coa-
lescing on these fine-grained loops to hoist the required communication outside of
the loops.

9 Automatic Split-phase Communication Generation

On machines with no hardware global address space support, remote data access in
UPC eventually needs to be compiled into one-sided communication calls. Due to
the asynchronous nature of message-passing networks, such one-sided communi-
cation routines are generally implemented in two phases. As the earlier example in
Section4.3shows, one straightforward translation of a remote memory access is to
have theinit op() call followed immediately by the correspondingsync op()
call. This code generation guarantees correctness, since all shared memory accesses
will execute in program order. The disadvantage, however, is that remote memory
accesses generally have very high latencies, and valuable processor cycles can be
wasted while waiting for the remote transfer.

In order to hide communication latency, optimizing compilers need to leverage
the asynchronous communication interface by performing communication place-
ment optimizations. The basic idea is to move the initiation and synchronization
calls for a remote operation as far apart from each other in the program as possible,

24

while preserving data and control dependencies. This minimizes the chance that
the synchronization call will waste time blocking for completion, and allows other
communication and computation to be overlapped with the latency of the remote
operation. We describe an algorithm that combines partial redundancy elimination
and communication scheduling to automatically generate split-phase communica-
tion. Based on an SSA representation, the algorithm targets shared variable loads,
reducing the number of messages and exploiting communication and computation
overlap simultaneously. The optimization can be applied to both scalar and pointer
accesses, and takes advantage of the SSA form in Open64 to efficiently place the
split-phase communication operations.

9.1 Algorithm Sketch

The analyses is performed on Open64’s Hashed SSA (HSSA) representation [18],
which uses global value numbering to build a sparse representation of the entire
program. A hash table is used to store all program expressions, and expressions with
the same value number share the same hash entry. The HSSA representation also
extends the original SSA form with the ability to support aliases, so that indirect
memory operations (the C dereference operator *) can be modeled as if they are
scalar variables. We further assume that control flow analysis has been performed
on the program.

9.1.1 Optimize Shared Pointer Arithmetic

ptr+int ptr - ptr ptr equality
standard packed standard packed standard packed

regular 4 4 3 3 3 3
generic 86 47 18 11 9 4
cyclic 60 29 12 8 9 3
indefinite 9 6 7 4 9 3
regular 4 4 3 3 3 3

Cost of Shared Pointer Operations

0
10
20
30
40
50
60
70
80
90

100

generic cyclic indefinite regular
Pointer Type

nu
m

be
r o

f c
yc

le
s

ptr + int -- struct
ptr + int -- packed
ptr - ptr -- struct
ptr - ptr -- packed
ptr equality -- struct
ptr equality -- packed

Figure 15: Cost of Shared Memory Operations

Before analyzing the split-phase communication placement, we perform partial
redundancy elimination on shared pointer arithmetic expressions. Pointer arith-
metic on shared addresses is inevitably slower than regular C pointer operations,

25

since a pointer-to-shared contains three fields, all of which may be updated dur-
ing pointer manipulations. Figure15 shows the cost of shared pointer arithmetic
operations on a Compaq Alphaserver ES45 node, with a 1-GHz processor run-
ning the Tru64 operating system [32]. Two pointer-to-shared representations are
included in the experiments; one declares the pointer-to-shared as a C struct, while
the other more efficient format represents the pointer as a packed eight-byte inte-
ger. As Figure15 shows, shared pointer arithmetic is an expensive operation even
for the packed representation. Eliminating redundant shared address calculation
is therefore an important optimization, especially when the C compiler likely will
have difficulties performing it. Even if the runtime functions implementing shared
pointer arithmetic operations are fully inlined, it is still unrealistic to expect the C
compiler to optimize the function body the same way it could for an expression.

The analysis begins with a mark phase that iterates through all statements in a
function and find nodes, oruse pointsof shared pointer arithmetic expressions. If
the expression is used more than once in the program (each static occurrence of the
expression counts as a use point), we determine the earliest point in the function
where the expression can be computed. This can be performed in two steps. First,
we collect thedefinition pointfor all of the variables and indirect loads that appear
in the expression; because the program is in SSA form, every variable and indirect
load is guaranteed to have a single definition that must dominate it. If a variable
is never defined inside the function, we set its definition point to be the function
entry point. In the second step, we perform a merge operation on the collection of
definition points to find the one that is dominated by all of the rest (i.e., it occurs
last). This point will serve as the single definition for the shared pointer arithmetic
expression, since at this point the values of all variables used by the expression have
become available.

This use-def information is all that is necessary to perform optimization. At a
shared pointer arithmetic expression’s definition point, we compute the value of the
optimized expression and assign it to a newly created variable. All occurrences of
the expressions are then replaced with the temporary. While this optimization is
not always profitable (e.g., the occurences of the expression may all be on differ-
ent paths), the speculation is safe since pointer arithmetic operations will not raise
exceptions.

9.1.2 Split-phase Communication for reads

Having eliminated redundant shared pointer arithmetic expressions, we next shift
our attention to optimizing shared reads. The first step of the analysis is simi-
lar to the previous case, as we also compute the single definition point for every
shared reads in the function. A major difference, however, is that we cannot sim-
ply place the nonblocking communication call at the definition point, since it may
effectively place a shared load expression on a path that does not perform the read
in the original code. This speculative code motion is incorrect because executing a
load on an invalid address (for indirect loads) will generate an exception. Further-
more, the nonblocking remote read operation in our communication system per-
forms RDMA (remote direct memory access) to copy the remote data directly into

26

*p = …

… *p

… *p

Def Point
Comm Point *p = …

… *p

Def Point

Comm Point

… *p

Comm Point

a) b)

Figure 16: Split-phase Communication Analysis. Communication points corre-
spond to init calls, actual use sync calls

a stack-allocated temporary. This means all outstanding nonblocking reads must
be synchronized before a function returns to avoid memory corruption, even if the
return value is never used by the program. The spurious message traffic can have a
significant performance penalty that outweighs the benefits of the optimization.

To prevent speculative code motion, we rely on the concept ofanticipated ex-
pressions[37]. An expression is said to beanticipatibleat program pointp if every
path fromp to exit evaluates the expression, with nothing in between that could
alter the value of the expression. To achieve safe code placement, a shared load
expressione must thus be anticipatible at the point where we insert the nonblock-
ing communication call. To efficiently compute this information, we divide the use
points ofe into groups based on their basic blocks. We associate every use group
with a communication pointp, with the property thatp is dominated by the defi-
nition point, and the expression is anticipatible afterp. Since all uses in a group
belong to the same basic block, the point immediately before the first use in the
basic block trivially satisfies this property. To maximize the amount of overlap,
though, we begin the search starting from the definition point ofe, to identify the
earliest program point that meets the requirement.

The communication points from each use group represent the locations where
it is safe to insert the nonblocking operation. We can further reduce the number
of redundant message by omitting communication at pointa if a is dominated by
another point from a different use group. The corresponding synchronizing calls

27

are then inserted immediately before every use of the expression. To ensure that no
nonblocking calls are synchronized more than once, we also invalidate the handle
after each synchronization call. Figure16shows how the communication points are
identified. In a), the load expression is anticipatible at the definition point, which
thus also serves as the single communication point. For b), two nonblocking calls
are required, since neither of the communication points dominate the other, and we
want to prevent speculative code motion.

9.2 Preserving the UPC Consistency Model

The compiler transformations presented so far maintain safety by preserving lo-
cal data dependencies. Such a notion of correctness, however, is inadequate for
parallel programs, as it does not take into account the restrictions imposed by the
synchronization constructs on the ordering of memory accesses. For example, UPC
employs barrier synchronization to divide a program into different phases, and ac-
cesses from different phases must execute in program order. Furthermore, UPC
supports a strict memory consistency model, which requires all threads to agree
on a total order over the strict operations. For the purposes of our optimizations,
this prevents the compiler from performing code motion that would reorder strict
reads and writes with any other memory accesses. To prevent accidental reordering
caused by our optimization, we model strict accesses as barrier statements that may
modify every shared variable in the program. This effectively inhibits any code
motion that moves relaxed shared load expressions across strict accesses.

9.3 Optimization Example

Figure17 provides a concrete example of how the optimization performs redun-
dancy elimination and communication scheduling. The code is extracted from a
fine-grained UPC benchmark that performs parallel unbalanced tree search [42].
The shared arithmetic expressionstealStack[t], which is computed five time in the
original UPC program, has been replaced with a temporary variable, eliminating
all redundant address computations. The three individual reads following the lock
operation are also pipelined to reduce their communication overhead. The opti-
mization also correctly conforms to the UPC memory model by not issuing any of
the pipelined reads before the lock call.

9.4 Preliminary Results

Figure 18 presents the performance improvement achieved by our optimizations
in two fine-grained UPC benchmarks. In the graph we refer to the unoptimized
version asbase, and the optimized version asopt. The results were collected on an
HP machine called Flyer, described in Table2.

Gups: This communication-intensive benchmark performs random access to
a distributed shared array. For the optimized program, we manually unrolled the
loop that performs the shared reads, so that it will benefit from the effects of read
pipelining. When the loop is unrolled 4 times, performance improves by up to 20%

28

_bupc_Mptra6 = UPCR_ADD_PSHARED1(stealStack, 480048,
i);

_bupc_UPC_ADD1 = _bupc_Mptra6;
_bupc_Msync7 = UPCR_GET_NB_PSHARED(

&_bupc_UPC_CSE5, _bupc_UPC_ADD1, 0, 4);
UPCR_WAIT_SYNCNB(_bupc_Msync7);
_bupc_Msync7 = UPCR_INVALID_HANDLE;
obsAvail = _bupc_UPC_CSE5;
_bupc_Msync9 = UPCR_GET_NB_PSHARED(

&_bupc_spillld8, _bupc_UPC_ADD1, 40, 8);
UPCR_WAIT_SYNCNB(_bupc_Msync9);
UPCR_LOCK(_bupc_spillld8);
_bupc_Msync10 = UPCR_GET_NB_PSHARED(

&_bupc_UPC_CSE4, _bupc_UPC_ADD1, 8, 4);
_bupc_Msync11 = UPCR_GET_NB_PSHARED(

&_bupc_UPC_CSE3, _bupc_UPC_ADD1, 4, 4);
_bupc_Msync12 = UPCR_GET_NB_PSHARED(

&_bupc_UPC_CSE2, _bupc_UPC_ADD1, 0, 4);
UPCR_WAIT_SYNCNB(_bupc_Msync10);
_bupc_Msync10 = UPCR_INVALID_HANDLE;
victimLocal = _bupc_UPC_CSE4;
UPCR_WAIT_SYNCNB(_bupc_Msync11);
_bupc_Msync11 = UPCR_INVALID_HANDLE;
victimShared = _bupc_UPC_CSE3;
UPCR_WAIT_SYNCNB(_bupc_Msync12);
_bupc_Msync12 = UPCR_INVALID_HANDLE;
victimWorkAvail = _bupc_UPC_CSE2;

struct stealStack_t
{

int workAvail;
int sharedStart;
int local;
int top;
int nNodes, maxDepth, nAcquire,

nRelease, nSteal, nFail;
upc_lock_t *stackLock;
Node stack[MAXSTACKDEPTH];

};
typedef struct stealStack_t StealStack;
shared StealStack stealStack[THREADS];

int steal((StealStack *s, int i, int k) {
…
int obsAvail = stealStack[i].workAvail;

upc_lock(stealStack[i].stackLock);
victimLocal = stealStack[i].local;
victimShared = stealStack[i].sharedStart;
victimWorkAvail = stealStack[i].workAvail;

Original UPC Code Optimized C output

Figure 17: Sample Code from Optimized Programs

due to the effects of message pipelining. When the loop is further unrolled so that
8 messages are now pipelined, performance increases by an additional 5%. This
matches our expectation on the diminishing returns of unrolling loops to achieve
message pipelining.

Mcop: This benchmark solves a problem called matrix chain ordering [11] in
UPC. The optimized version again takes advantage of read pipelining by issuing
four remote reads at the same time to overlap them. The performance speedup
ranges from 50% to 90% for this benchmark, growing as the number of threads
increases.

10 Related Work

In addition to the Berkeley UPC compiler, there are several UPC implementations
available on a variety of platforms. These compilers include the HP UPC Com-
piler [20], the GCC-based Intrepid Compiler [26], the MuPC runtime system [43],
and the Cray UPC Compiler [21]. El-Ghazawi et al. [13, 24] have evaluated the
performance of some of the above compilers with NAS parallel benchmarks, and
found that they can generally offer comparable performance to the MPI version
of the NAS benchmarks. In particular, the HP UPC compiler offers a number of
communication optimizations such as software caching, as does the MuPC runtime
system.

29

Comm. Optimization on mcop

0
1
2
3
4
5
6
7

2 4 8

Threads

Ti
m

e
(s

ec
on

ds
)

Base
Opt

Comm. Optimization on Gups

0

200

400

600

800

2 4 6 8

Threads

10
00

up
da

te
s/

se
co

nd base
opt (4 reads)
opt(8 reads)

Figure 18: Performance Improvement

Several research efforts [41, 31, 33] have used Open64 as an open source plat-
form for compiler research and application development. Among these projects,
the one most closely related to the research goals of the Berkeley UPC Compiler
is the Co-Array Fortran Group at Rice University [19], which aims to provide a
portable, retargetable, and high-quality implementation of the global address space
language that is also based on Open64. To achieve portability, their compiler per-
forms source-to-source translation from Co-Array Fortran to Fortran 90 with calls
to runtime library primitives, while high performance is to be attained by employing
optimization strategies with platform specific communication cost models.

For today’s distributed memory machines, the overhead of accessing remote
data is usually orders of magnitude higher than local memory accesses. This dras-
tic performance gap has motivated numerous research works that aim to reduce
communication overhead through automatic compiler optimizations. In general,
communication optimization techniques can be classified into two categories: those
that attempt to hide communication latencies through overlapping (e.g., prefetch-
ing, pipelined communication), and those that try to reduce the number and vol-
ume of message traffic (e.g., message coalescing). Traditionally the optimization
problems have been studied along with communication code generation in paral-
lelizing compilers. For example, Amarasinghe and Lam [2] use dataflow analysis
on array elements to automatically parallelize a program and perform optimiza-
tions that eliminate redundant messages. Kandemir et al. [29] use a combination
of dataflow analysis and linear algebra framework to perform optimizations such
as message vectorization and message coalescing in the PARADIGM compiler.
Similarly, a number of optimizations including communication vectorization and
pipelining have been implemented in the HPF compiler [1].

In the context of communication optimizations that overlap communication and
computation, perhaps the prior research that is most closely related to our tech-
niques is Hendren and Zhu’s work on parallel C programs [49]. Their analysis
framework is based on the concept of possible-placement analysis, which identifies
the earliest possible point to issue a remote read, and delays the issuing of a remote
write to exploit opportunities for blocked communication. Chakrabarti et al. [15]
have implemented a global communication scheduling algorithm for High Perfom-
rance Fortran that handles remote accesses in an interdependent manner. They have

30

also explored using late placement to expose more opportunities for combining
messages.

Krishnamurthy and Yelick [30] also presented compiler analysis and optimiza-
tions for explicitly parallel Split-C [23] programs with a global address space. Most
of their work focuses on improving the accuracy and efficiency of the cycle detec-
tion [44] algorithm for SPMD programs, which enforces sequential consistency
under reordering transformation. The optimizations presented in this report also
guarantees that the consistency model of the language would not be violated, and
our optimization framework can be augmented with their cycle detection algorithm
to allow for more opportunities at communication optimization in the presence of
strict accesses.

11 Conclusion

We have described in this report the design and implementation of the Berkeley
UPC-to-C translator, which is an essential component in the Berkeley UPC com-
piler, a portable high-performance implementation of the UPC language. Our con-
tributions in this paper can be summarized as the following:

• We have demonstrated that with a source-to-source translation strategy, we
can build a portable compilation framework for UPC that works on a broad
range of platforms, including shared memory machines, vector systems, clus-
ters, and other hybrid architectures.

• We have also established that performance need not be sacrificed for the sake
of portability. Despite the source-to-source translation, the Berkeley UPC
compiler can achieve good serial performance even on a vector platform.

• We have implemented several communication optimizations for fine-grained
UPC programs in the translator, and evaluated their effectiveness on a num-
ber of benchmarks. One optimization, message coalescing, improves per-
formance by combining small messages into bulk transfers. Another opti-
mization, split-phase communication, utilizes communication and computa-
tion overlapping to hide communication latency. Preliminary results suggest
that the optimizations can be very effective at reducing the communication
costs of fine-grained UPC applications, especially on distributed memory ma-
chines. Furthermore, we believe both optimizations can apply to any Global
Address Space Languages that perform one-side communications.

Ultimately, the metric of success for the UPC language will be its degrees of ac-
ceptance in the parallel computing community. An open-source UPC compiler that
offers both portability and good performance will contribute significantly toward
the goal of promoting UPC. As the Berkeley UPC compiler matures, we believe it
would eventually exert a positive influence on the development of other UPC com-
pilers and on continuing language development, similar to GCC’s role on C/C++
development. By offering an implementation that is freely available on a wide range

31

architectures, the Berkeley UPC compiler can help set the bar on performance that
other vendor compilers should meet or surpass on their supported platforms. As
we continue to improve the robustness and performance of the Berkeley UPC com-
piler, we can also encourage other compilers with more incentives to enhance their
implementations. This healthy competition will increase the qualities of UPC im-
plementations overall, thereby attracting more users for UPC.

32

References

[1] R. Allen and K. Kennedy.Optimizing Compilers for Modern Architectures.
Morgan Kaufmann Publishers, 2002.

[2] S. Amarasinghe and S. Lam. Communicaton optimization and code genera-
tion for distributed memory machines. Inproceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation(PLDI),
June 1993.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Si-
mon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Bench-
marks.The International Journal of Supercomputer Applications, 5(3):63–73,
Fall 1991.

[4] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu,
M. Welcome, and K. Yelick. An evaluation of current high-performance net-
works. Inthe 17th International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2003.

[5] C. Bell, W. Chen, D. Bonachea, and K. Yelick. Evaluating support for global
address space languages on the cray x1. In19th Annual International Confer-
ence on Supercomputing (ICS), June 2004.

[6] The Berkeley UPC Compiler, 2002. http://upc.lbl.gov.

[7] The Berkeley UPC Runtime Specification, 2003.
http://upc.lbl.gov/docs/system/upcr.pdf.

[8] K. Berlin, J. Huan, M. Jacob, et al. Evaluating the impact of programming
language features on the performance of parallel applications on cluster ar-
chitectures. In16th International Workshop on Languages and Compilers for
Parallel Processing (LCPC), October 2003.

[9] D. Bonachea. GASNet specification. Technical Report CSD-02-1207, Uni-
versity of California, Berkeley, October 2002.

[10] D. Bonachea. Proposal for extending the UPC memory copy library functions,
2004.

[11] P. Bradford, G. Rawlins, and G. Shannon. Efficient matrix chain ordering in
polylog time.SIAM Journal on Computing, 27(2), 1998.

[12] Programming Languages – C, 1999. The ISO C Standard, ISO/IEC
9899:1999.

[13] F. Cantonnet, Y. Yao, S. Annareddy, A. Mohamed, and T. El-Ghazawi. Per-
formance monitoring and evaluation of a UPC implementation on a NUMA
architecture. Inthe 17th International Parallel and Distributed Processing
Symposium (IPDPS), 2003.

33

[14] CCS: SGI altix. http://www.ccs.ornl.gov/Ram/Ram.html.

[15] S. Chakrabarti, M. Gupta, and J. Choi. Global communication analysis and
optimization. InSIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 68–78, 1996.

[16] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu, and K. Yelick. A
performance analysis of the Berkeley UPC Compiler. InProceedings of the
17th International Conference on Supercomputing (ICS), June 2003.

[17] F. Chow, S. Chan, R. Kennedy, et al. A new algorithm for partial redundancy
elimination based on SSA form. InProc. of SIGPLAN ’97 Conf. on Program-
ming Language Design and Implementation (PLDI), May 1997.

[18] F. Chow, S. Chan, S. Liu, et al. Effective representation of aliases and indi-
rect memory operations in ssa form. Inroc. of 6th Int’l Conf. on Compiler
Construction (CC), April 1996.

[19] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey. Co-array For-
tran performance and potential: An NPB experimental study. In16th In-
ternational Workshop on Languages and Compilers for Parallel Processing
(LCPC), October 2003.

[20] Compaq UPC version 2.0 for Tru64 UNIX.
http://h30097.www3.hp.com/upc/.

[21] Cray C/C++ reference manual. http://www.cray.com/craydoc/manuals/004-
2179-003/html-004-2179-003/.

[22] Cray X1 system overview. http://www.cray.com/craydoc/20/manuals/S-2346-
23/html-S-2346-23/S-2346-23-toc.html.

[23] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. Eicken,
and K. Yelick. Parallel programming in Split-C. InSupercomputing (SC1993),
1993.

[24] T. El-Ghazawi and F. Cantonnet. UPC performance and potential: A NPB
experimental study. InSupercomputing2002 (SC2002), November 2002.

[25] T. El-Ghazawi, W. Carlson, and J. Draper.UPC specification, 2003.
http://upc.gwu.edu/documentation.html.

[26] GCC Unified Parallel C. http://www.intrepid.com/upc/.

[27] M. Gupta, S. Midkiff, E. Schonberg, et al. A HPF compiler for the IBM SP2.
In Supercomputing 1995, November 1995.

[28] P. Hilfinger et al. Titanium language reference manual. Technical Report
CSD-01-1163, University of California, Berkeley, November 2001.

34

[29] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N. Shenoy. A
global communication optimization technique based on data-flow analysis and
linear algebra.ACM Transactions on Programming Languages and Systems,
21(6):1251–1297, 1999.

[30] A. Krishnamurthy and K. Yelick. Analyses and optimizations for shared ad-
dress space programs.Jorunal of Parallel and Distributed Computing, 1996.

[31] Compiler research and the kylin project. http://www.capsl.udel.edu/kylin/.

[32] Lemieux. http://www.psc.edu/machines/tcs/lemieux.html.

[33] J. Lin et al. A compiler framework and speculative analysis and optimiza-
tions. In SIGPLAN’03 Conference on Programming Language Design and
Implementation (PLDI), June 2003.

[34] S. Liu, R. Lo, and F. Chow. Loop induction variable canonicalization in par-
allelizing compilers. InProceedings of the 1996 Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT ’96), October 1996.

[35] F. McMahon. The Livermore Fortran Kernels: A computer test of the numeri-
cal performance range. Technical Report UCRL-53745, Lawrence Livermore
National Laboratory, December 1986.

[36] The Message Passing Interface (MPI) standard. http://www.mpi-forum.org/.

[37] S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997.

[38] R. Netzer and B. Miller. What are race conditions? some issues and formal-
ization.ACM Letters on Programmming Languages and Systems, I(1), March
1992.

[39] R. Numwich and J. Reid. Co-Array Fortran for parallel programming. Tech-
nical Report RAL-TR-1998-060, Rutherford Appleton Laboratory, 1998.

[40] Open64 compiler tools. http://open64.sourceforge.net.

[41] Open research compiler. http://ipf-orc.sourceforge.net/.

[42] J. Prins, J. Huan, W. Pugh, et al. UPC implementation of an unbalanced
tree search benchmark. Technical Report 03-034, Department of Computer
Science, University of North Carolina, 2003.

[43] J. Savant and S. Seidel. MuPC: A run time system for unified parallel c.
Technical Report CS-TR-02-03, Department of Computer Science, Michigan
Techincal University, September 2002.

[44] D. Shasha and M. Snir. Efficient and correct execution of parallel programs
that share memory.ACM Transactions on Programming Languages and Sys-
tems, April 1988.

35

[45] J. Su and K. Yelick. Array prefetching for irregular array accesses in titanium.
In Sixth Annual Workshop on Java for Parallel and Distributed Computing,
2004.

[46] C.-W. Tseng. An optimizing Fortran D compiler for MIMD distributed-
memory machines. PhD thesis, 1993.

[47] M. Wolf, D. Maydan, and D. Chen. Combining loop transformations consid-
ering caches and scheduling. InProceedings of the 29th Annual IEEE/ACM
International Symposium (MICRO-29), December 1996.

[48] K. Yelick et al. Titanium: a high performance java dialect. Inproceedings
of ACM 1998 Workshop on Java for High-Performance Network Computing,
February 1998.

[49] Y. Zhu and L. Hendren. Communication optimizations for parallel C pro-
grams.Jorunal of Parallel and Distributed Computing, 58(2):301–312, 1999.

36

	1 Introduction
	2 Background
	2.1 Unified Parallel C
	2.2 The Berkeley UPC Compiler

	3 The UPC-to-C Translator: An Overview
	4 Code Generation Issues
	4.1 Portable Code Generation
	4.2 Handling Shared Expressions
	4.3 Code Generation Example

	5 Translator Output Performance -- Vectorization
	5.1 Implementation Approach
	5.2 Livermore Kernels

	6 Optimization Framework
	7 Optimizing UPC Parallel Loop
	8 Message Coalescing: Implementation and Results
	8.1 Analysis for the Optimization
	8.2 Implementation Sketch
	8.3 Preliminary Evaluation
	8.3.1 Performance
	8.3.2 Programmability

	9 Automatic Split-phase Communication Generation
	9.1 Algorithm Sketch
	9.1.1 Optimize Shared Pointer Arithmetic
	9.1.2 Split-phase Communication for reads

	9.2 Preserving the UPC Consistency Model
	9.3 Optimization Example
	9.4 Preliminary Results

	10 Related Work
	11 Conclusion

